Understanding the neural basis of social play in juvenile rats may ultimately help restore social play deficits in autistic children. We previously found that administration of a vasopressin (AVP) V1a receptor (V1aR) antagonist into the lateral septum (LS) increased social play behavior in male juvenile rats and decreased it in females. Here, we demonstrate that glutamate, but not GABA, is involved in this sex-specific regulation.
View Article and Find Full Text PDFVasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system.
View Article and Find Full Text PDFDespite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring.
View Article and Find Full Text PDFSocial play is a highly rewarding behavior that is essential for the development of social skills. Social play is impaired in children diagnosed with autism, a disorder with a strong sex bias in prevalence. We recently showed that the arginine vasopressin (AVP) system in the lateral septum (LS) regulates social play behavior sex-specifically in juvenile rats: Administration of a AVP 1a receptor (V1aR) antagonist increased social play behavior in males and decreased it in females.
View Article and Find Full Text PDFSocial play is a highly rewarding and motivated behaviour displayed by juveniles of many mammalian species. We hypothesized that the orexin/hypocretin (ORX) system is involved in the expression of juvenile social play behaviour because this system is interconnected with brain regions that comprise the social behaviour and mesocorticolimbic reward networks. We found that exposure to social play increased recruitment of ORX-A neurons in juvenile rats.
View Article and Find Full Text PDFOxytocin influences social behaviour and hypothalamic-pituitary-adrenal (HPA) function. We previously found that social instability stress (SS) from postnatal day 30 to 45 increased oxytocin receptor (OTR) densities in the lateral septum and nucleus accumbens of adolescent male rats. Here, we investigated social behaviour and HPA function in adolescent male SS rats compared with age- and sex-matched controls after intraperitoneal treatment with an OTR antagonist L-368,899 (OTR-A).
View Article and Find Full Text PDFOxytocin (OT) often regulates social behaviours in sex-specific ways, and this may be a result of sex differences in the brain OT system. Adult male rats show higher OT receptor (OTR) binding in the posterior bed nucleus of the stria terminalis (pBNST) than adult female rats. In the present study, we investigated the mechanisms that lead to this sex difference.
View Article and Find Full Text PDFSocial play is a highly rewarding behavior displayed mostly during the juvenile period. We recently showed that vasopressin V1a receptor (V1aR) blockade in the lateral septum (LS) enhances social play in male juvenile rats, but reduces it in females. Here, we determined whether the LS-AVP system modulates dopamine (DA) and/or norepinephrine (NE) neurotransmission in the LS to regulate social play behavior in sex-specific ways.
View Article and Find Full Text PDFTo understand how the brain regulates behavior, many variables must be taken into account, with sex as a prominent variable. In this review, we will discuss recent human and rodent studies showing the sex-specific involvement of the neuropeptides vasopressin and oxytocin in social and anxiety-related behaviors. We discuss that sex differences can be evident at pre-pubertal ages as seen in the sex-specific regulation of social recognition, social play, and anxiety by the vasopressin system in juvenile rats.
View Article and Find Full Text PDFSocial experiences in adolescence are essential for displaying context-appropriate social behaviors in adulthood. We previously found that adult male rats that underwent social instability stress (SS) in adolescence had reduced social interactions with unfamiliar peers compared with non-stressed controls (CTL). Here we determined whether SS altered social recognition and social reward and brain oxytocin and vasopressin receptor density in adolescence.
View Article and Find Full Text PDFOxytocin (OT) and vasopressin (AVP) regulate various social behaviors via activation of the OT receptor (OTR) and the AVP V1a receptor (V1aR) in the brain. Social behavior often differs across development and between the sexes, yet our understanding of age and sex differences in brain OTR and V1aR binding remains incomplete. Here, we provide an extensive analysis of OTR and V1aR binding density throughout the brain in juvenile and adult male and female rats, with a focus on regions within the social decision-making network.
View Article and Find Full Text PDFWe previously found that oxytocin (OT) receptor (OTR) binding density in the medial amygdala (MeA) correlated positively with social interest (i.e., the motivation to investigate a conspecific) in male rats, while OTR binding density in the central amygdala (CeA) correlated negatively with social interest in female rats.
View Article and Find Full Text PDFSex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats.
View Article and Find Full Text PDFWe recently demonstrated that vasopressin (AVP) in the lateral septum modulates social play behavior differently in male and female juvenile rats. However, the extent to which different social contexts (i.e.
View Article and Find Full Text PDFSocial interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors.
View Article and Find Full Text PDFPsychoneuroendocrinology
November 2013
Social play activities among juveniles are thought to contribute to the development of social and emotional skills in humans and animals. Conversely, social play deficits are observed in developmental neuropsychiatric disorders. Importantly, many of these disorders show sex differences in incidence, course of the disease, and severity of symptoms.
View Article and Find Full Text PDFBackground: Infectious diseases and inflammation during pregnancy increase the offspring's risk for behavioral disorders. However, how immune stress affects neural circuitry during development is not well known. We tested whether a prenatal immune challenge interferes with the development of social play and with neural circuits implicated in social behavior.
View Article and Find Full Text PDFA better neurobiological understanding of high and abnormal aggression based on adequate animal models is essential for novel therapy and prevention. Selective breeding of rats for extremes in anxiety-related behavior resulted in two behavioral phenotypes with high and abnormal forms of aggression. Rats bred for low anxiety-related behavior (LAB) consistently show highest levels of aggression and little social investigation in the resident-intruder (RI) test, compared with non-selected low-aggressive (NAB) rats.
View Article and Find Full Text PDFEarly life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat.
View Article and Find Full Text PDFEarly life stress, in particular child abuse and neglect, is an acknowledged risk factor for the development of pathological anxiety and aggression. In rodents, 3-h daily maternal separation (MS) during the first 2 weeks of life is an established animal model of early life stress and has repeatedly been shown to increase anxiety and stress responsiveness in adulthood. However, preclinical studies on the effects of postnatal stress on adult aggression are limited.
View Article and Find Full Text PDFProlactin (PRL) has been shown to promote maternal behaviour, and to regulate neuroendocrine and emotional stress responses. These effects appear more important in the peripartum period, when the brain PRL system is highly activated. Here, we studied the mechanisms that underlie the anti-stress effects of PRL.
View Article and Find Full Text PDFEarly life stress is believed to constitute a risk factor for the development of mood disorders later in life. In the present study, we hypothesized that prenatal stress (PS) exerts long-lasting effects in female rat offspring, resulting in impaired adaptations to stress during lactation and, as such, may be a contributory factor to postpartum mood disorders. PS increased anxiety in adult virgin females compared with controls.
View Article and Find Full Text PDF