Publications by authors named "Remaut H"

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.

View Article and Find Full Text PDF

is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function.

View Article and Find Full Text PDF

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including pks Escherichia coli, which produces the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. However, it remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells to cause harm. Here, using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we demonstrate that the oncogenic potential of pks E.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Corynebacteriales, which have a unique outer membrane structure made of mycolic acids, and explores the mysterious 'S-layer' that enhances this membrane.
  • - Researchers isolated the PS2 S-layer and used advanced 3D cryoEM techniques to reveal its structure, consisting of hexameric core units and trimeric lattice arrangements that contribute to a semipermeable membrane.
  • - The findings provide insights into S-layer functions and evolution within Corynebacteriales, suggesting potential for developing bioengineered materials that utilize these membrane properties.
View Article and Find Full Text PDF

Species within the Bacillus cereus sensu lato group, known for their spore-forming ability, are recognized for their significant role in food spoilage and food poisoning. The spores of B. cereus are adorned with numerous pilus-like appendages, referred to as S-ENAs and L-ENAs.

View Article and Find Full Text PDF

In pathogenic Bacillota, spores can form an infectious particle and can take up a central role in the environmental persistence and dissemination of disease. A poorly understood aspect of spore-mediated infection is the fibrous structures or 'endospore appendages' (ENAs) that have been seen to decorate the spores of pathogenic Bacilli and Clostridia. Current methodological approaches are opening a window on these long enigmatic structures.

View Article and Find Full Text PDF

Predatory bacteria feed upon other bacteria in various environments. Bdellovibrio exovorus is an obligate epibiotic predator that attaches on the prey cell surface, where it grows and proliferates. Although the mechanisms allowing feeding through the prey cell envelope are unknown, it has been proposed that the prey's proteinaceous S-layer may act as a defensive structure against predation.

View Article and Find Full Text PDF

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2-neutralizing antibodies (nABs) have shown potential in COVID-19 treatment, but resistant strains have made most existing nABs ineffective, highlighting the need for new cocktails targeting distinct epitopes.
  • A discovery program used traditional methods combined with AI predictions to identify two potent nABs, which were validated through animal testing.
  • However, structural analysis revealed that the AI predictions were flawed, as both nABs targeted the same binding epitope, emphasizing that experimental validation is crucial in selecting effective nABs.
View Article and Find Full Text PDF

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane β-barrel proteins (OMPs) and lipoproteins. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome.

View Article and Find Full Text PDF

The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts.

View Article and Find Full Text PDF

Various bacteria are suggested to contribute to colorectal cancer (CRC) development, including which produce the genotoxin colibactin that induces characteristic mutational signatures in host epithelial cells. It remains unclear how the highly unstable colibactin molecule is able to access host epithelial cells and its DNA to cause harm. Using the microbiota-dependent ZEB2-transgenic mouse model of invasive CRC, we found that drives CRC exacerbation and tissue invasion in a colibactin-dependent manner.

View Article and Find Full Text PDF

Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability.

View Article and Find Full Text PDF

Membrane interaction constitutes to be an essential parameter in the mode of action of entities such as proteins, as well as cell-penetrating and antimicrobial peptides, resulting in noninvasive or lytic activities depending on the membrane compositions and interactions. Recently, a nanobody able to interact with the top priority, multidrug-resistant bacterial pathogen was discovered, although binding took place with fixed cells only. To potentially overcome this limitation, linear peptides corresponding to the complementarity-determining regions (CDR) were synthesized and fluorescently labeled.

View Article and Find Full Text PDF

The majority of the world population carry the gastric pathogen . Fortunately, most individuals experience only low-grade or no symptoms, but in many cases the chronic inflammatory infection develops into severe gastric disease, including duodenal ulcer disease and gastric cancer. Here we report on a protective mechanism where attachment and accompanying chronic mucosal inflammation can be reduced by antibodies that are present in a vast majority of carriers.

View Article and Find Full Text PDF

Two decades have passed since the initial proposition that amyloids are not only (toxic) byproducts of an unintended aggregation cascade, but that they can also be produced by an organism to serve a defined biological function. That revolutionary idea was borne out of the realization that a large fraction of the extracellular matrix that holds Gram-negative cells into a persistent biofilm is composed of protein fibers (curli; tafi) with cross-β architecture, nucleation-dependent polymerization kinetics and classic amyloid tinctorial properties. The list of proteins shown to form so-called functional amyloid fibers in vivo has greatly expanded over the years, but detailed structural insights have not followed at a similar pace in part due to the associated experimental barriers.

View Article and Find Full Text PDF

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function.

View Article and Find Full Text PDF

Surface layers (S-layers) are 2D paracrystalline protein monolayers covering the cell envelope of many prokaryotes and archaea. Proposed functions include a role in cell support, as scaffolding structure, as molecular sieve, or as virulence factor. holds two S-layers, composed of Sap or EA1, which interchange in early and late exponential growth phase.

View Article and Find Full Text PDF

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer.

View Article and Find Full Text PDF
Article Synopsis
  • Bacillus cereus sensu lato is a diverse group of Gram-positive bacteria known for their endospore formation and unique microscopic appendages called endospore appendages (Enas), whose identities and functions were previously unclear.
  • Researchers isolated these Enas from a food poisoning strain and identified two main types, S- and L-Ena, with S-Enas showing characteristics of a novel class of pili that provide resistance to extreme conditions.
  • The ena-gene cluster related to these appendages is widely present in various B. cereus species, indicating their potential importance in survival across different environments, including clinical and food-related contexts.
View Article and Find Full Text PDF

Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces.

View Article and Find Full Text PDF

Anthrax is a highly resilient and deadly disease caused by the spore-forming bacterial pathogen . The bacterium presents a complex and dynamic composition of its cell envelope, which changes in response to developmental and environmental conditions and host-dependent signals. Because of their easy to access extracellular locations, cell envelope components represent interesting targets for the identification and development of novel therapeutic and vaccine strategies.

View Article and Find Full Text PDF

Gram-negative bacteria are surrounded by a cell envelope that comprises an outer membrane (OM) and an inner membrane that, together, delimit the periplasmic space, which contains the peptidoglycan (PG) sacculus. Covalent anchoring of the OM to the PG is crucial for envelope integrity in Escherichia coli. When the OM is not attached to the PG, the OM forms blebs and detaches from the cell.

View Article and Find Full Text PDF