Integrating hydrothermal liquefaction (HTL) in wastewater treatment is promising for converting sewage sludge into biofuels and fertilizers. However, challenges arise due to the ecotoxicity and nitrification-inhibiting properties of HTL process water. This study investigated the activated sludge treatment of HTL process water in continuous lab-scale reactors, focusing on the adaptive capacity of microbial communities and degradation of HTL-derived pollutants.
View Article and Find Full Text PDFThe global reliance on non-renewable fossil fuels highlights the urgent need for sustainable alternative energy sources. Hydrothermal liquefaction (HTL) offers a promising solution by converting biomass, such as sewage sludge, into biocrude oil. However, the integration of excess HTL-process water (HTL-PW), a by-product of this process, into conventional wastewater treatment requires careful evaluation.
View Article and Find Full Text PDFCan biofilms enhance the rates of phosphorus removal in wastewater treatment? In order to narrow the scientific gap on the effect of biofilm thickness on the activity and microbial community of phosphorus-accumulating bacteria, this study investigated biofilms of 30 to 1000 µm thickness in a moving bed biofilm reactor. Measurements on 5 different biofilm carriers showed that biomass-specific phosphorus release and uptake rates increased as a function of biofilm thickness for biofilms thinner than about 110 µm but were lower for thicker biofilms of about 550-1000 µm. The reduced phosphorus uptake and release rates in the thickest biofilms can result from substrate mass transfer limitations whereas the low activity in the thinnest biofilms can be related to a too high turnover rate in the biofilm due to heterotrophic growth.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2023
The role of indigenous microbial communities in residual oil extraction following a recovery process is not well understood. This study investigated the dynamics of resident microbial communities in oil-field simulating sand pack bioreactors after the polymer flooding stage resumed with waterflooding and explored their contribution to the oil extraction process. The microbial community succession was studied through high-throughput sequencing of 16S rRNA genes.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2021
As the energy demand is escalating tremendously and crude oil being the primary energy source for at least the next two decades, the production of crude oil should be enhanced to meet the global energy needs. This can be achieved by either exploration of new oil fields for crude oil extraction or employing enhanced oil recovery (EOR) technology to recover the residual oil from existing marginal oil fields. The former method requires more capital investment and time; therefore, this review focuses on the latter.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2020
Various aspects of the oil fields in terms of microbial activity (souring, biocorrosion, etc.) and oil production (polymer flooding, etc.) have been evaluated through a variety of experiments.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2017
With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper.
View Article and Find Full Text PDFPorridge (koozh) is one of the traditional foods made from Eleusine coracana L. grains (Finger millet). It is a soft food prepared from processed (germinated & fermented) finger millet flour (FMF).
View Article and Find Full Text PDF