Publications by authors named "Relja Vasic"

Reported herein is the synthesis of the previously unknown [Ir(1,5-COD)(μ-H)](4) (where 1,5-COD = 1,5-cyclooctadiene), from commercially available [Ir(1,5-COD)Cl](2) and LiBEt(3)H in the presence of excess 1,5-COD in 78% initial, and 55% recrystallized, yield plus its unequivocal characterization via single-crystal X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, electrospray/atmospheric pressure chemical ionization mass spectrometry (ESI-MS), and UV-vis, IR, and nuclear magnetic resonance (NMR) spectroscopies. The resultant product parallels--but the successful synthesis is different from, vide infra--that of the known and valuable Rh congener precatalyst and synthon, [Rh(1,5-COD)(μ-H)](4). Extensive characterization reveals that a black crystal of [Ir(1,5-COD)(μ-H)](4) is composed of a distorted tetrahedral, D(2d) symmetry Ir(4) core with two long [2.

View Article and Find Full Text PDF

While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As-O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core.

View Article and Find Full Text PDF

An in situ electrochemical X-ray absorption spectroscopy (XAS) cell has been fabricated that enables high oxygen flux to the working electrode by utilizing a thin poly(dimethylsiloxane) (PDMS) window. This cell design enables in situ XAS investigations of the oxygen reduction reaction (ORR) at high operating current densities greater than 1 mA in an oxygen-purged environment. When the cell was used to study the ORR for a Pt on carbon electrocatalyst, the data revealed a progressive evolution of the electronic structure of the metal clusters that is both potential-dependent and strongly current-dependent.

View Article and Find Full Text PDF

Many metal clusters in the 1-nm size range are catalytically active, and their enhanced reactivity is often attributed to their size, structure, morphology, and details of alloying. Synchrotron sources provide a wide range of opportunities for studying catalysis. Among them, extended X-ray absorption fine-structure (EXAFS) spectroscopy is the premier method for investigating structure and composition of nanocatalysts.

View Article and Find Full Text PDF