Publications by authors named "Rekioua D"

This research paper discusses a wind turbine system and its integration in remote locations using a hybrid power optimization approach and a hybrid storage system. Wind turbine systems' optimization controllers operate MPPT strategies efficiently, optimizing the system's overall performance. The proposed approach is HTb(P&O/FLC), which combines the P&O and FLC methods.

View Article and Find Full Text PDF

This research discusses the solar and wind sourcesintegration in aremote location using hybrid power optimization approaches and a multi energy storage system with batteries and supercapacitors. The controllers in PV and wind turbine systems are used to efficiently operate maximum power point tracking (MPPT) algorithms, optimizing the overall system performance while minimizing stress on energy storage components. More specifically, on PV generator, the provided method integrating the Perturb & Observe (P&O) and Fuzzy Logic Control (FLC) methods.

View Article and Find Full Text PDF

High performance and comfort are key features recommended in hybrid electric vehicle (HEV) design. In this paper, a new coordination strategy is proposed to solve the issue of undesired torque jerks and large power ripples noticed respectively during drive mode commutations and power sources switching. The proposed coordinated switching strategy uses stair-based transition function to perform drive mode commutations and power source switching's within defined transition periods fitting the transient dynamics of power sources and traction machines.

View Article and Find Full Text PDF

In this paper, a critical issue related to power management control in autonomous hybrid systems is presented. Specifically, challenges in optimizing the performance of energy sources and backup systems are proposed, especially under conditions of heavy loads or low renewable energy output. The problem lies in the need for an efficient control mechanism that can enhance power availability while protecting and extending the lifespan of the various power sources in the system.

View Article and Find Full Text PDF

This paper proposes a novel Fuzzy-MPDTC control applied to a fuel cell battery electric vehicle whose traction is ensured using a permanent magnet synchronous motor (PMSM). On the traction side, model predictive direct torque control (MPDTC) is used to control PMSM torque, and guarantee minimum torque and current ripples while ensuring satisfactory speed tracking. On the sources side, an energy management strategy (EMS) based on fuzzy logic is proposed, it aims to distribute power over energy sources rationally and satisfy the load power demand.

View Article and Find Full Text PDF

This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC).

View Article and Find Full Text PDF

This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM.

View Article and Find Full Text PDF