Background/aim: Patients with hypoxic bladder cancer benefit from hypoxia modification added to radiotherapy, but no biomarkers exist to identify patients with hypoxic tumours. We, herein, aimed to implement oxygen-enhanced MRI (OE-MRI) in xenografts derived from muscle-invasive bladder cancer (MIBC) for future hypoxia biomarker discovery work; and generate gene expression data for future biomarker discovery.
Materials And Methods: The flanks of female CD-1 nude mice inoculated with HT1376 MIBC cells.
Hypoxia and a suppressive tumour microenvironment (TME) are both independent negative prognostic factors for muscle-invasive bladder cancer (MIBC) that contribute to treatment resistance. Hypoxia has been shown to induce an immune suppressive TME by recruiting myeloid cells that inhibit anti-tumour T cell responses. Recent transcriptomic analyses show hypoxia increases suppressive and anti-tumour immune signalling and infiltrates in bladder cancer.
View Article and Find Full Text PDFTumour hypoxia status provides prognostic information and predicts response to hypoxia‑modifying treatments. A previous study by our group derived a 24‑gene signature to assess hypoxia in bladder cancer. The objectives of the present study were to compare platforms for generating signature scores, identify cut‑off values for prospective studies, assess intra‑tumour heterogeneity and confirm hypoxia relevance.
View Article and Find Full Text PDF