Background: Malignant hyperthermia susceptibility (MHS) and acute pancreatitis (AP) share a common cellular pathomechanism that is Ca-overload of the muscle fiber and the pancreatic acinar cell (PAC). In the muscle, gain-of-function mutations of the ryanodine receptor (RyR1) make the Ca-release mechanism hypersensitive to certain ligands, including Ca, volatile anaesthetics and succinylcholine, creating a medical emergency when the patient is exposed to these drugs. As RyR1 was shown to contribute to Ca-overload in PAC, we presumed that pancreata of MHS individuals are more prone to AP.
View Article and Find Full Text PDFBackground And Purpose: Pulmonary arterial hypertension (PAH) is a progressive disease in which chronic membrane potential (E) depolarisation of the pulmonary arterial smooth muscle cells (PASMCs) causes calcium overload, a key pathological alteration. Under resting conditions, the negative E is mainly set by two pore domain potassium (K) channels, of which the TASK-1 has been extensively investigated.
Experimental Approach: Ion channel currents and membrane potential of primary cultured human(h) PASMCs were measured using the voltage- and current clamp methods.
Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell's membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits.
View Article and Find Full Text PDF