We analyze the physics of self-bound droplets in a doubly dipolar Bose-Einstein condensate composed by particles with both electric and magnetic dipole moments. Using the particularly relevant case of dysprosium, we show that the anisotropy of the doubly dipolar interaction potential is highly versatile and nontrivial, depending critically on the relative orientation and strength between the two dipole moments. This opens novel possibilities for exploring intriguing quantum many-body physics.
View Article and Find Full Text PDFAn array of single Rydberg atoms driven by a temporally modulated atom-field detuning is studied. The periodic modulation effectively modifies the Rabi coupling, leading to unprecedented dynamics in the presence of Rydberg-Rydberg interactions, in particular, blockade enhancement, antiblockades, and state-dependent population trapping. Interestingly, the Schrieffer-Wolf transformation reveals a fundamental process in Rydberg gases, correlated Rabi coupling, which stems from the extended nature of the Rydberg-Rydberg interactions.
View Article and Find Full Text PDFWe show how a broad class of lattice spin-1/2 models with angular- and distance-dependent couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are obtained by admixing van der Waals interactions between fine-structure split Rydberg states with laser light. The strengths of the diagonal spin interactions as well as the "flip-flop," and "flip-flip" and "flop-flop" interactions can be tuned by exploiting quantum interference, thus realizing different spin symmetries.
View Article and Find Full Text PDFWe develop a theoretical framework for the dissipative propagation of quantized light under conditions of electromagnetically induced transparency in atomic media involving strongly interacting Rydberg states. The theory allows us to determine the peculiar spatiotemporal structure of the output of the recently demonstrated single-photon filter and the recently proposed single-photon subtractor, which, respectively, let through and absorb a single photon. In addition to being crucial for applications of these and other optical quantum devices, the theory opens the door to the study of exotic dissipative many-body dynamics of strongly interacting photons in nonlinear nonlocal media.
View Article and Find Full Text PDFWe study trapped 2D atomic Bose-Einstein condensates with spin-independent interactions in the presence of an isotropic spin-orbit coupling, showing that a rich physics results from the nontrivial interplay between spin-orbit coupling, confinement and interatomic interactions. For low interactions two types of half-vortex solutions with different winding occur, whereas strong-enough repulsive interactions result in a stripe-phase similar to that predicted for homogeneous condensates. Intermediate interaction regimes are characterized for large enough spin-orbit coupling by an hexagonally-symmetric phase with a triangular lattice of density minima similar to that observed in rapidly rotating condensates.
View Article and Find Full Text PDF