Publications by authors named "Reiss-Bubenheim D"

The National Aeronautics and Space Administration's standard spaceflight diet for rodents is the nutrient-upgraded rodent food bar (NuRFB). The shelf life of the NuRFB needs to be determined in order to avoid malnutrition of rodents and confounding of research results resulting from nutritional deficiency. The authors compared the oxidative and nutrient stability of NuRFBs stored at either ambient temperature (26 °C) or at refrigeration temperature (4 °C) for use in long-term rodent feeding experiments.

View Article and Find Full Text PDF

Objective: Selection of an appropriate diet for rodent spaceflight experiments is critical and may have significant effects on mission results. The National Aeronautics and Space Administration (NASA) rodent food bar (RFB) was reformulated and designated as the nutrient-upgraded RFB (NuRFB). The objectives of this study were to determine whether the NuRFB nutrient formulation meets the 1995 National Research Council (NRC) nutrient recommendations and whether the NuRFB can be used for short-term (45-d) and long-term (90-d) spaceflight experiments.

View Article and Find Full Text PDF

To support the study of the effects of microgravity on biological systems, our group is developing and testing methods that allow the cultivation of C. elegans and S. cerevisiae in microgravity.

View Article and Find Full Text PDF

NIH-R1 and R2 missions, conducted by NASA, allowed us to study the effects of the microgravitational environment 1) on cardiac ANP in pregnant rats, spaceflown for 11 days and dissected after a 2-day readaptation to Earth's gravity, after natural delivery, and 2) on maturation of cardiac ANP system in rat fetuses developed for 11 days in space and dissected on the day of landing, 2 days before birth. Immunocytochemical and electron microscopy analyses showed a typical formation of ANP-containing granules in atrial myocytes, in both dams and fetuses. Using competitive RT-PCR and radioimmunoassays, we observed that, after 2 days of readaptation to Earth's gravity, cardiac ANP biosynthesis of rat dams flown in space was increased by about twice, when compared to Synchronous and Vivarium Control rats.

View Article and Find Full Text PDF

Cellular distributions of ezrin, a cytoskeletal protein involved in apical cell differentiation in choroid plexus, and carbonic anhydrase II, which is partly involved in the cerebrospinal fluid production, were studied by immunocytochemistry, at the level of choroidal epithelial cells from the lateral, third and fourth ventricles in normal or experimental fetuses, in parallel with the ultrastructure of apical microvilli, observed by transmission electron microscopy. We compared choroid plexuses from developing normal rats (gestational day 15 to birth) with choroid plexuses from 20-day-old rat fetuses, developed for 11 days in space, aboard a space shuttle (NASA STS-66 mission, NIH-R1 experiments), from gestational day 9 to day 20. The main changes observed in fetuses developed in space were demonstrated by immunocytochemistry and concerned the distribution of ezrin and carbonic anhydrase II.

View Article and Find Full Text PDF