Publications by authors named "Reisig D"

Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.

View Article and Find Full Text PDF

We assessed the utility of a Bayesian analysis of dose-mortality curves using probit analysis. A Bayesian equivalent of a conventional single population probit analysis using Abbott's correction demonstrated the ability of the Bayesian model to recover parameters from generative data. We then developed a model that removed Abbott's correction and estimated natural survivorship as part of the overall model fitting process.

View Article and Find Full Text PDF

Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has evolved resistance to insecticidal toxins from Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) expressed in genetically engineered corn, Zea mays L. This study provides an overview of field trials from Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2022 to show changes in susceptibility in H. zea to Bt corn.

View Article and Find Full Text PDF

The majority of field corn, Zea mays L., in the southeastern United States has been genetically engineered to express insecticidal toxins produced by the soil bacterium, Bacillus thuringiensis (Bt). Field corn is the most important mid-season host for corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), which has developed resistance to all Cry toxins in Bt corn.

View Article and Find Full Text PDF

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population.

View Article and Find Full Text PDF

Corn, Zea mays L. (Poales: Poaceae), growers in the US Cotton Belt are required to plant 20% of total corn acres to non-Bt hybrids for resistance management (non-Bt refuge). Most growers do not meet this requirement, in part, because they perceive non-Bt hybrids to yield less than Bt hybrids.

View Article and Find Full Text PDF

Helicoverpa zea Boddie (Lepidoptera: Noctuidae) is an important pest in many crops in the southern United States. Upon reaching the final larval instar, H. zea quests for a pupation site in the soil.

View Article and Find Full Text PDF

Helicoverpa zea (Boddie) is a polyphagous pest that can cause serious damage to crops, including soybeans (Glycine max L.). In soybeans with both determinate and indeterminate growth habits, H.

View Article and Find Full Text PDF

Insect migrations have ecological and economic impacts, particularly in agriculture. However, there is limited knowledge about the migratory movements of pests at the continental scale, which is an important factor influencing the spread of resistance genes. Understanding the migratory patterns of economic pests, like Helicoverpa zea (Boddie), is essential for improving Integrated Pest Management (IPM) and Insect Resistance Management (IRM) strategies.

View Article and Find Full Text PDF

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management.

View Article and Find Full Text PDF

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022.

View Article and Find Full Text PDF

Studies in the lab have demonstrated that evaluating the effect of soil moisture and other variables is essential for understanding the importance of environmental factors influencing the Heliothinae pupal stage, but simulated field studies are conducted infrequently. We compared the pupation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) under saturated and unsaturated conditions across 3 distinct soil types (coarse sand, high organic muck, and fine-textured clay) and observed adult emergence, as well as pupal depth and weight. The interaction between soil type and moisture had a significant effect on adult emergence.

View Article and Find Full Text PDF

Background: Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H.

View Article and Find Full Text PDF

After resistance is first detected, continued resistance monitoring can inform decisions on how to effectively manage resistant populations. We monitored for resistance to Cry1Ac (2018 and 2019) and Cry2Ab2 (2019) from southeastern USA populations of . We collected larvae from various plant hosts, sib-mated the adults, and tested neonates using diet-overlay bioassays and compared them to susceptible populations for resistance estimates.

View Article and Find Full Text PDF

Heliothinae soil pupation is understudied despite the key role this life stage plays in their development. Many Heliothinae are important agricultural pests and understanding the interplay of environment and pupation is important to optimize pest management tactics oriented toward pupae. We studied the impact of three soil types (coarse sand, high organic muck, and fine-textured clay) on Helicoverpa zea (Boddie) in-season and overwintering pupal survivorship, diapause, depth, and weight in at two locations (North and South Carolina).

View Article and Find Full Text PDF

The Special Collection 'Spodoptera frugiperda (fall armyworm): Ecology and Management of its World-scale Invasion Outside of the Americas' presents reviews and research that address topics of overarching interest and contributes to a better understanding of this pest and its management, now that it has spread outside the Americas. The collection is a combination of invited articles presenting new information published for the first time, invited review papers, and a selection of relevant high-quality articles previously published in Journal of Economic Entomology (JEE). Articles in the Collection, as well as selected citations of articles in other publications, reflect the increase in research on S.

View Article and Find Full Text PDF

The use of insect-resistant transgenic crops producing protein Cry toxins (Bt) to control caterpillars is wide-spread. Development of a mechanism to prevent Bt from reaching its target site in the digestive system could result in Bt resistance and resistance to other insecticides active . Increased feeding rates by increasing temperature in tobacco budworms, , and bollworms, , decreased Bt Cry1Ac susceptibility and mortality.

View Article and Find Full Text PDF

Genetically engineered corn and cotton that produce insecticidal toxins derived from the bacterium (Bt) have been used to manage insect pests in the United States and elsewhere. In some cases, this has led to regional suppression of pest populations and pest eradication within the United States, and these outcomes were associated with reductions in conventional insecticides and increased profits for farmers. In other instances, pests evolved resistance to multiple Bt traits, compromising the capacity of Bt crops to manage pests and leading to increased feeding injury to crops in the field.

View Article and Find Full Text PDF

Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate.

View Article and Find Full Text PDF

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones.

View Article and Find Full Text PDF

Background: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges.

View Article and Find Full Text PDF

Soybean (Glycine max L.) is an important row crop in the United States and Helicoverpa zea (Boddie) is one of the most serious insect pests in this system. Economic thresholds for H.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the impact of Helicoverpa zea damage on maize, comparing Bt maize (which produces Cry toxins) and non-Bt maize across North and South Carolina from 2017 to 2019.
  • Despite the presence of resistance to Cry toxins in maize, Bt maize showed significantly lower damage compared to non-Bt.
  • A negative correlation was found between nearby maize abundance and damage levels, suggesting that the distribution of the moth population influences infestation rates in local maize crops.
View Article and Find Full Text PDF
Article Synopsis
  • Tarnished plant bugs are a major pest in U.S. cotton production, prompting a study of their abundance across 120 cotton fields in five southeastern states during 2019 and 2020.
  • Field-level scouting is crucial, as variations in pest density are influenced more by factors within fields than by broader agricultural districts or states.
  • A new sampling plan was established to estimate pest populations more accurately, indicating that landscape composition can significantly affect tarnished plant bug density, with more agricultural area linked to higher pest populations.
View Article and Find Full Text PDF