Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.
View Article and Find Full Text PDFThe biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) can perform dissimilatory nitrate reduction to ammonium (DNRA).
View Article and Find Full Text PDFLactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc mesenteroides are considered to be the main aroma producers in Dutch-type cheeses. Both species of lactic acid bacteria were grown in retentostat mono- and co-cultures to investigate their interaction at near-zero growth rates and to determine if co-cultivation enhances the aroma complexity compared to single species performance.
View Article and Find Full Text PDFObjective: The partial cell recycling chemostat is a modification of the chemostat in which cells are partially recycled towards the bioreactor. This allows using dilution rates higher than the maximum growth rate resulting in higher biomass concentrations and increased process rates. In this study, we demonstrate with a single observation that this system can also be used to study microorganisms at near-zero growth rates and as production system for compounds specific for slow growth, such as those typical for ripened cheese.
View Article and Find Full Text PDF