Thin films of the superconductor YBaCuO (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature.
View Article and Find Full Text PDFThe shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine the effective charge q of the charge carriers of that tunnel.
View Article and Find Full Text PDFThe defect-rich morphology of YBaCuO (YBCO) thin films leads to a glass-like arrangement of Abrikosov vortices which causes the resistance to disappear in vanishing current densities. This vortex glass consists of entangled vortex lines and is identified by a characteristic scaling of the voltage-current isotherms. Randomly distributed columnar defects stratify the vortex lines and lead to a Bose glass.
View Article and Find Full Text PDFThe continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal.
View Article and Find Full Text PDFWe theoretically demonstrate that the high-critical-temperature (high-T) superconductor BiSrCaCuO (BSCCO) is a natural candidate for the recently envisioned classical space-time crystal. BSCCO intrinsically forms a stack of Josephson junctions. Under a periodic parametric modulation of the Josephson critical current density, the Josephson currents develop coupled space-time crystalline order, breaking the continuous translational symmetry in both space and time.
View Article and Find Full Text PDFWe present a fabrication technology for nanoscale superconducting quantum interference devices (SQUIDs) with overdamped superconductor-normal metal-superconductor (SNS) trilayer Nb/HfTi/Nb Josephson junctions. A combination of electron-beam lithography with chemical-mechanical polishing and magnetron sputtering on thermally oxidized Si wafers is used to produce direct current SQUIDs with 100-nm-lateral dimensions for Nb lines and junctions. We extended the process from originally two to three independent Nb layers.
View Article and Find Full Text PDFWe report on the fabrication and characterization of nanopatterned dc SQUIDs with grain boundary Josephson junctions based on heteroepitaxially grown YBaCuO (YBCO)/SiTrO (STO) superlattices on STO bicrystal substrates. Nanopatterning is performed by Ga focused-ion-beam milling. The electric transport properties and thermal white flux noise of superlattice nanoSQUIDs are comparable to single layer YBCO devices on STO bicrystals.
View Article and Find Full Text PDFIntrinsic Josephson junctions in high-temperature superconductor BiSrCaCuO (BSCCO) are known for their capability to emit high-power terahertz photons with widely tunable frequencies. Hotspots, as inhomogeneous temperature distributions across the junctions, are believed to play a critical role in synchronizing the gauge-invariant phase difference among the junctions, so as to achieve coherent strong emission. In this paper, we demonstrate an on-chip sensing technique that can characterize hotspot distributions on BSCCO.
View Article and Find Full Text PDFWe report on nanopatterned YBa2Cu3O7-δ (YBCO) direct current superconducting quantum interference devices (SQUIDs) based on grain boundary Josephson junctions. The nanoSQUIDs are fabricated by epitaxial growth of 120 nm-thick films of the high-transition temperature cuprate superconductor YBCO via pulsed laser deposition on MgO bicrystal substrates with 24° misorientation angle, followed by sputtering of dAu = 65 nm thick Au. Nanopatterning is performed by Ga focused ion beam (FIB) milling.
View Article and Find Full Text PDFWe present an experimental approach for cryogenic dielectric measurements on ultrathin insulating films. Based on a coplanar microwave waveguide design, we implement superconducting quarter-wave resonators with inductive coupling, which allows us to determine the real part ε of the dielectric function at gigahertz frequencies and sample thicknesses down to a few nanometers. We perform simulations to optimize resonator coupling and sensitivity, and we demonstrate the possibility to quantify ε with a conformal mapping technique in a wide sample-thickness and ε-regime.
View Article and Find Full Text PDFThe development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders.
View Article and Find Full Text PDFThe actual light absorption photovoltaic responses realized in three-dimensional (3D) radial junction (RJ) units can be rather different from their planar counterparts and remain largely unexplored. We here adopt a laser excitation photoelectric microscope (LEPM) technology to probe the local light harvesting and photoelectric signals of 3D hydrogenated amorphous silicon (a-Si:H) RJ thin film solar cells constructed over a Si nanowire (SiNW) matrix, with a high spatial resolution of 600 nm thanks to the use of a high numerical aperture objective. The LEPM scan can help to resolve clearly the impacts of local structural damages, which are invisible to optical and SEM observations.
View Article and Find Full Text PDFThe study of transverse resistance of superconductors is essential to understand the transition to superconductivity. Here, we investigated the in-plane transverse resistance of BaKFeAs superconductors, based on ultra-thin micro-bridges fabricated from optimally doped single crystals. An anomalous transverse resistance was found at temperatures around the superconducting transition, although magnetic order or structure distortion are absent in the optimal doping case.
View Article and Find Full Text PDFUltralow-field (ULF) nuclear magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are promising spectroscopy and imaging methods allowing for, e.g., the simultaneous detection of multiple nuclei or imaging in the vicinity of metals.
View Article and Find Full Text PDFWe report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa₂Cu₃O (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of the sample's London penetration depth and allow for a quantitative reconstruction of the supercurrents flowing in the sample as a result of Meissner screening. These results show the potential of scanning single spin magnetometry for studies of the nanoscale magnetic properties of thin-film superconductors, which could be readily extended to elevated temperatures or magnetic fields.
View Article and Find Full Text PDFThe two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (T; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-T superconductors.
View Article and Find Full Text PDFWe present the design, realization, and performance of a three-axis vector nano superconducting quantum interference device (nanoSQUID). It consists of three mutually orthogonal SQUID nanoloops that allow distinguishing the three components of the vector magnetic moment of individual nanoparticles placed at a specific position. The device is based on Nb/HfTi/Nb Josephson junctions and exhibits line widths of ∼250 nm and inner loop areas of 600 × 90 and 500 × 500 nm(2).
View Article and Find Full Text PDFThe determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors.
View Article and Find Full Text PDFThe coherence of quantum systems is crucial to quantum information processing. Although superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, for example, cold atoms storing the quantum information processed by superconducting circuits.
View Article and Find Full Text PDFSuperconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.
View Article and Find Full Text PDFA novel single electron pump based on individual molecules (a single wall carbon nanotube) is discussed in terms of the hybrid superconducting-normal conducting pumping principle. A concept demonstration device has been built based on a carbon nanotube contacted by Nb-Ti leads. Charge current quantization is achieved through rf modulation of the back gate voltage.
View Article and Find Full Text PDFLow-temperature scanning electron microscopy (LTSEM) has been used to image the supercurrent distribution in ramp-type Josephson junctions between Nb and either the electron-doped cuprate Nd_{2-x}Ce_{x}CuO_{4-y} or the hole-doped cuprate YBa_{2}Cu_{3}O_{7}. For zigzag-shaped devices in the short junction limit the critical current is strongly suppressed at zero applied magnetic field. The LTSEM images show that this is due to the Josephson current counterflow in neighboring 0 and pi facets, which is induced by the d_{x;{2}-y;{2}} order parameter in the cuprates.
View Article and Find Full Text PDFJosephson junctions with a phase drop of pi in the ground state allow us to create vortices of supercurrent carrying only half of the magnetic flux quantum Phi0 approximately 2.07 x 10(-15) Wb. Such semifluxons have twofold degenerate ground states denoted upward arrow (with flux +Phi0/2 and supercurrent circulating clockwise) and downward arrow (with flux -Phi0/2 and supercurrent circulating counterclockwise).
View Article and Find Full Text PDF