Publications by authors named "Reinhart B Billiar"

We previously demonstrated that the number and height of oocyte microvilli were reduced in baboon fetuses deprived of estrogen in utero and restored to normal in animals supplemented with estradiol. Phosphorylated ezrin and Na+/H+ exchange regulatory factor 1 (NHERF, now termed SLC9A3R1) link f-actin bundles to the membrane, whereas alpha-actinin cross-links f-actin to form microvilli. Therefore, we determined whether these proteins were expressed in oocytes of the fetal baboon ovary and whether expression and/or localization were altered between mid and late gestation in association with an increase in estrogen and in late gestation in animals in which estrogen was suppressed (>95%) or restored by treatment with an aromatase inhibitor with or without estradiol.

View Article and Find Full Text PDF

In fetal ovaries of estrogen-suppressed baboons, we have previously shown that follicle numbers were 50% lower than in estrogen-replete animals and contained oocytes with a reduced number of microvilli. In the baboon fetal ovary, although estrogen receptor (ER)alpha and beta have been detected by immunocytochemistry in granulosa cells, it is not known whether oocytes express ER. Because the actions of estrogen are mediated by interaction with cell-specific receptors, the current study determined whether ERalpha/beta mRNA were expressed in oocytes of baboon fetal ovaries obtained on day 165 (term = day 184) of gestation.

View Article and Find Full Text PDF

Although it is well established that formation of the pool of follicles available for ovarian function and fertility in adulthood in human and non human primates occurs in utero, our understanding of the regulation of fetal ovarian development is incomplete. Our laboratories have been instrumental in establishing the baboon as a model for the study of human reproductive endocrinology and showed that estrogen plays a central integrative role in regulating fetal-placental development. Therefore, we adapted our baboon model to study the role of estrogen on fetal ovarian development.

View Article and Find Full Text PDF

Background: Normal pregnancy is characterized by sodium and water conservation and an increase in plasma volume that is required for an uncomplicated pregnancy. Renal interstitial hydrostatic pressure (RIHP) is significantly decreased in pregnant rats. This decrease in RIHP may play an important role in the sodium and water retention that characterizes normal pregnancy.

View Article and Find Full Text PDF

Although studies in transgenic mice suggest that estrogen is important for development of the testis, very little is known about the potential role of estrogen in maturation of the primate fetal testis. Therefore, as a first step to determine whether estrogen regulates maturation of the fetal primate testis, we used immunocytochemistry to determine estrogen receptor (ER) alpha and beta expression in the fetal baboon testis. Second, we established methods to quantify ERbeta mRNA levels by competitive reverse transcription-polymerase chain reaction in Sertoli cells isolated by laser capture microdissection (LCM) from the fetal baboon testis.

View Article and Find Full Text PDF

We recently showed that the number of primordial follicles was reduced by 50% in ovaries of near-term fetal baboons deprived of estrogen in utero and restored to normal in animals supplemented with estrogen. Oocytes are avascular and rely on surrounding granulosa cells for nutrients, a process facilitated by microvilli on the oocyte surface. However, our understanding of oocyte microvillus development in the primate fetal ovary is incomplete.

View Article and Find Full Text PDF

We recently demonstrated that the reduction in the number of primordial follicles in ovaries of near-term baboon fetuses deprived of estrogen in utero was associated with increased expression of alpha-inhibin, but not activin betaA and betaB or the activin receptors. Therefore, we proposed that estrogen regulates fetal ovarian follicular development by controlling the intraovarian inhibin:activin ratio. As a prelude to conducting experiments to test this hypothesis, in the current study we determined whether the primate fetal ovary expressed Smads 2/3 and 4 and whether expression of these activin-signaling proteins was altered in fetal ovaries of baboons in which estrogen production was suppressed.

View Article and Find Full Text PDF

In the adult ovary, pituitary FSH via interaction with its receptor (FSHR) is required for follicular maturation and granulosa cell development. In humans and nonhuman primates, the pool of follicles available for adult ovarian function is established in utero. However, our understanding of the ontogeny and developmental regulation of FSHR in the ovary of the primate fetus is incomplete.

View Article and Find Full Text PDF

We recently demonstrated that the number of primordial follicles was significantly reduced in the ovaries of near-term baboon fetuses deprived of estrogen in utero and restored to normal in animals administered estradiol. Although the baboon fetal ovary expressed estrogen receptors alpha and beta, the mechanism(s) of estrogen action remains to be determined. It is well established that inhibin and activins function as autocrine/paracrine factors that impact adult ovarian function.

View Article and Find Full Text PDF

Ovarian function in adult human and nonhuman primates is dependent on events that take place during fetal development, including the envelopment of oocytes by granulosa (i.e., folliculogenesis).

View Article and Find Full Text PDF

In adult mammals, estrogen regulates ovarian function, and estrogen receptor (ER) is expressed in granulosa cells of antral follicles of the adult baboon ovary. Because the foundation of adult ovarian function is established in utero, the present study determined whether ERalpha and/or ERbeta were expressed in fetal ovaries obtained on Days 100 (n = 3) and 165-181 (n = 5) of baboon gestation (term = Day 184). On Day 100, ERalpha protein was detected by immunocytochemistry in surface epithelium and mesenchymal-epithelial cells but not oocytes in germ cell cords.

View Article and Find Full Text PDF