Density functional theory calculations and classical Monte Carlo simulations are applied to study the behavior of water in contact with a hydroxylated corundum (001) surface. Using DFT with periodic boundary conditions at T = 0 K, we systematically study the influence of the number of water molecules on the surface geometry and on the structure of the contact water layer. Only little effect of the thickness of the water layer on the geometry of the surface hydroxyl groups is observed.
View Article and Find Full Text PDFThe formation of hydrated CmF2+ and CmF2+ species in aqueous solutions are studied in the temperature range of 20−90 °C at different fluoride concentrations and at constant ionic strength as well as at constant fluoride concentration and different ionic strengths by means of time-resolved laser fluorescence spectroscopy (TRLFS). The molar fractions of the Cm3+ aqua ion, CmF2+, and CmF2+ species are determined by peak deconvolution of the emission spectra. An increase of the mono- and difluoro complexes is observed with increasing fluoride concentration and/or increasing temperature.
View Article and Find Full Text PDFFor the reliable long-term modeling of the actinide migration in geological formations, the adsorption/desorption properties and the reactivity of mineral surfaces must be understood at the molecular level. The adsorption of radioisotopes at mineral surfaces of the aquifer is an important process that leads to the retention of contaminants such as radionuclides. Their transport by the ground water is either retarded or even completely inhibited by the presence of such a surface.
View Article and Find Full Text PDFBy employing the nonlinear optical, interface selective experiment of sum frequency spectroscopy together with independent ab initio and density functional theory calculations, we determine the functional species of a corundum (001) surface: doubly coordinated OH groups which differ in their bond tilt angles. The interaction of the functional species with the adjacent water molecules is also observed. In a large pH range around the point of zero charge, the interaction is not controlled electrostatically but by hydrogen bonding.
View Article and Find Full Text PDFTime-resolved laser fluorescence spectroscopy (TRLFS) is used to study the hydration of the Cm3+ ion in acidified (0.1 M perchloric acid) H2O and D2O from 20 to 200 degrees C. Strong temperature dependency is found for several of the spectroscopic quantities associated with the 6D'(7/2) --> 8S'(7/2) photoemission spectra, with similar relative changes in both solvents.
View Article and Find Full Text PDFFor the long-term performance assessment of nuclear waste repositories, knowledge about the interactions of actinide ions with mineral surfaces such as iron oxides is imperative. The mobility of released radionuclides is strongly dependent on the sorption/desorption processes at these surfaces and on their incorporation into the mineral structure. In this study the interaction of Am(III) with 6-line-ferrihydrite (6LFh) was investigated by EXAFS spectroscopy.
View Article and Find Full Text PDFThe optical spectra of Cm(3+) incorporated into the crystalline host structure of [Y(H(2)O)(8)]Cl(3).15-crown-5 (1) is investigated by using laser spectroscopic methods at temperatures between 20 and 293 K. The coordination geometry of the [Y(H(2)O)(8)](3+) entity in 1 is a distorted bicapped trigonal prism with approximately C(2) point symmetry, as confirmed by single-crystal X-ray diffraction at 200 K.
View Article and Find Full Text PDFResults of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months.
View Article and Find Full Text PDF