Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult brain.
View Article and Find Full Text PDFAnimal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain.
View Article and Find Full Text PDFAntarctic krill (Euphausia superba, hereafter krill) is a pelagic living crustacean and a key species in the Southern Ocean ecosystem. Krill builds up a huge biomass and its synchronized behavioral patterns, such as diel vertical migration (DVM), substantially impact ecosystem structure and carbon sequestration. However, the mechanistic basis of krill DVM is unknown and previous studies of krill behavior in the laboratory were challenged by complex behavior and large variability.
View Article and Find Full Text PDFThe small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins.
View Article and Find Full Text PDFStartle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (, ) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers.
View Article and Find Full Text PDF's dorsal clock neurons (DNs) consist of four clusters (DNs, DNs, DNs, and DNs) that largely differ in size. While the DNs and the DNs encompass only two neurons, the DNs consist of ∼15 neurons, and the DNs comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear.
View Article and Find Full Text PDFDrosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous.
View Article and Find Full Text PDFDopamine is a wake-promoting neuromodulator in mammals and fruit flies. In , the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNs) and small ventrolateral neurons (s-LNs) have been identified as wake-promoting neurons within the clock neuron network.
View Article and Find Full Text PDFCollective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding β1 and β3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells.
View Article and Find Full Text PDFThe Rho GTPase family is involved in actin dynamics and regulates the barrier function of the endothelium. One of the main barrier-promoting Rho GTPases is Cdc42, also known as cell division control protein 42 homolog. Currently, regulation of Cdc42-based signalling networks in endothelial cells (ECs) lack molecular details.
View Article and Find Full Text PDFWith the approach of winter, many insects switch to an alternative protective developmental program called diapause. Drosophila melanogaster females overwinter as adults by inducing a reproductive arrest that is characterized by inhibition of ovarian development at previtellogenic stages. The insulin producing cells (IPCs) are key regulators of this process, since they produce and release insulin-like peptides that act as diapause-antagonizing hormones.
View Article and Find Full Text PDFLight profoundly affects the circadian clock and the activity levels of animals. Along with the systematic changes in intensity and spectral composition, over the 24-h day, light shows considerable irregular fluctuations (noise). Using light as the Zeitgeber for the circadian clock is, therefore, a complex task and this might explain why animals utilize multiple photoreceptors to entrain their circadian clock.
View Article and Find Full Text PDFFörster Resonance Energy Transfer (FRET) provides a way to directly observe the activation of heterotrimeric G-proteins by G-protein coupled receptors (GPCRs). To this end, FRET based biosensors are made, employing heterotrimeric G-protein subunits tagged with fluorescent proteins. These FRET based biosensors complement existing, indirect, ways to observe GPCR activation.
View Article and Find Full Text PDFEndothelial cells line the vasculature and act as gatekeepers that control the passage of plasma, macromolecules and cells from the circulation to the interstitial space. Dysfunction of the endothelial barrier can lead to uncontrolled leak or edema. Vascular leakage is a hallmark of a range of diseases and despite its large impact no specialized therapies are available to prevent or reduce it.
View Article and Find Full Text PDFThe bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear.
View Article and Find Full Text PDFEndothelial barrier function is carefully controlled to protect tissues from edema and damage inflicted by extravasated leukocytes. RhoGTPases, in conjunction with myriad regulatory proteins, exert both positive and negative effects on the endothelial barrier integrity. Precise knowledge about the relevant mechanisms is currently fragmented and we therefore performed a comprehensive analysis of endothelial barrier regulation by RhoGTPases and their regulators.
View Article and Find Full Text PDFEndothelial cells line the vasculature and are important for the regulation of blood pressure, vascular permeability, clotting and transendothelial migration of leukocytes and tumor cells. A group of proteins that that control the endothelial barrier function are the RhoGTPases. This study focuses on three homologous (>88%) RhoGTPases: RhoA, RhoB, RhoC of which RhoB and RhoC have been poorly characterized.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation.
View Article and Find Full Text PDFThe small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined.
View Article and Find Full Text PDFCell adhesion and migration are regulated through the concerted action of cytoskeletal dynamics and adhesion proteins, the activity of which is governed by RhoGTPases. Specific RhoGTPase signaling requires spatio-temporal activation and coordination of subsequent protein-protein and protein-lipid interactions. The nature, location and duration of these interactions are dependent on polarized extracellular triggers, such as cell-cell contact, and intracellular modifying events, such as phosphorylation.
View Article and Find Full Text PDFThe yeast Efr3p protein is a main regulator of the Stt4p phosphatidylinositol 4-kinase at contact sites between the endoplasmic reticulum and the plasma membrane. A mutation in its fly homologue Rbo, leads to diminished light responses in the eye attributed to progressively impaired PLC signaling. Here, we find that Efr3s plays a role in maintaining responsiveness to the type-I angiotensin II (AngII) receptors.
View Article and Find Full Text PDFThis review offers a detailed discussion of the interaction between pharmaceutical compounds and vehicles using the affinity capillary electrophoresis and the microemulsion electrokinetic chromatography. Partition coefficients of drugs were calculated between a micelle and an aqueous phases from the measurement of the migration time, provided the critical micelle concentration and the phase ratio are known. Thermodynamic quantities such as enthalpy and entropy changes of micellar solubilization were calculated from the temperature dependence of the partition coefficients.
View Article and Find Full Text PDFThe determinants of the Actinobacillus pleuropneumoniae RTX toxins ApxI, ApxII, and ApxIII were expressed in an Escherichia coli strain. The toxins were concentrated from the supernatants of cell cultures. The addition of the toxins to the aqueous-phase-bathing lipid bilayer membranes resulted in an increase in the membrane conductance when membranes made of asolectin or phosphatidylethanolamine were used.
View Article and Find Full Text PDF