Most plant-pathogen interactions do not result in pathogenesis because of pre-formed defensive plant barriers or pathogen-triggered activation of effective plant immune responses. The mounting of defence reactions is accompanied by a profound modulation of plant metabolism. Common metabolic changes are the repression of photosynthesis, the increase in heterotrophic metabolism and the synthesis of secondary metabolites.
View Article and Find Full Text PDFCyanobacteria combine the photosynthetic and respiratory electron transport in one membrane system, the thylakoid membrane. This feature requires an elaborate regulation mechanism to maintain a certain redox status of the electron transport chain, hence allowing proper photosynthetic and respiratory energy metabolism. In this context, metabolic adaptations, as seen in the light-to-dark and dark-to-light transitions, are particularly challenging.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2008
The initiation of defence responses in plants is accompanied by fundamental changes in gene expression: the expression of pathogenesis-related genes is co-ordinately regulated with metabolic changes such as down regulation of photosynthesis and induction of sink metabolism. To identify candidate regulators of this co-ordinated regulatory mechanism, the role of WRKY transcription factors in the initiation of defence response was analysed in tomato. A WRKY-type transcription factor (LpWRKY1) from tomato was cloned by a reverse Northern approach.
View Article and Find Full Text PDF