Publications by authors named "Reinhard Ellgass"

The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies.

View Article and Find Full Text PDF

Introduction: Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs.

View Article and Find Full Text PDF

Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection.

View Article and Find Full Text PDF

Background: Orthotopic cardiac xenotransplantation has seen substantial advancement in the last years and the initiation of a clinical pilot study is close. However, donor organ overgrowth has been a major hurdle for preclinical experiments, resulting in loss of function and the decease of the recipient. A better understanding of the pathogenesis of organ overgrowth after xenotransplantation is necessary before clinical application.

View Article and Find Full Text PDF

Introduction: After orthotopic cardiac xenotransplantation, the combination of both the inflammatory responses to the exposure of a recipient to the xenogeneic organ and the use of cardiopulmonary bypass has been assumed to cause detrimental side effects. These have been described not only to affect the transplanted organ (heart) itself, but also the recipient's lungs. In this article, we summarize how these possible detrimental processes can be minimized or even avoided.

View Article and Find Full Text PDF

Background: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project.

View Article and Find Full Text PDF

Background: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations.

View Article and Find Full Text PDF

In this Letter, Mayuko Kurome and Valeri Zakhartchenko have been added to the author list (affiliated with Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany). The author list and 'Author contributions' section have been corrected online; see accompanying Amendment.

View Article and Find Full Text PDF

Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons.

View Article and Find Full Text PDF