Pathogenic variants in , which encodes the voltage-gated potassium channel Kv3.3, are associated with spinocerebellar ataxia type 13. SCA13 is a neurodegenerative disease characterized by ataxia, dysarthria and oculomotor dysfunction, often in combination with other signs and symptoms such as cognitive impairment.
View Article and Find Full Text PDFCD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described c.
View Article and Find Full Text PDFFor several decades, cancers have demonstrably been one of the most frequent causes of death worldwide. In addition to genetic causes, cancer can also be caused by epigenetic gene modifications. Frequently, tumor suppressor genes are epigenetically inactivated due to hypermethylation of their CpG islands, actively contributing to tumorigenesis.
View Article and Find Full Text PDFSilencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival.
View Article and Find Full Text PDFTranscription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated.
View Article and Find Full Text PDF(IRX) encodes members of homeodomain containing genes which are involved in development and differentiation. Since it has been reported that the gene is localized in a lung cancer susceptibility locus, the epigenetic regulation and function of IRX1 was investigated in lung carcinogenesis. We observed frequent hypermethylation of the promoter in non-small cell lung cancer (NSCLC) compared to small cell lung cancer (SCLC).
View Article and Find Full Text PDFAlthough NF-κB is known to play a pivotal role in lung cancer, contributing to tumor growth, microenvironmental changes, and metastasis, the epigenetic regulation of NF-κB in tumor context is largely unknown. Here we report that the IKK2/NF-κB signaling pathway modulates metastasis-associated protein 2 (MTA2), a component of the nucleosome remodeling and deacetylase complex (NuRD). In triple transgenic mice, downregulation of IKK2 (Sftpc-cRaf-IKK2DN) in cRaf-induced tumors in alveolar epithelial type II cells restricted tumor formation, whereas activation of IKK2 (Sftpc-cRaf-IKK2CA) supported tumor growth; both effects were accompanied by altered expression of MTA2.
View Article and Find Full Text PDFKidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice.
View Article and Find Full Text PDFThe (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10.
View Article and Find Full Text PDFThe Hippo pathway regulates organ size, growth and comprises several tumor related factors, including the oncoprotein YAP1 and the tumor suppressor RASSF1A. is frequently epigenetically inactivated in cancer. In our study, we analyzed the effect of RASSF1A on the function of YAP1.
View Article and Find Full Text PDFEpigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the () gene.
View Article and Find Full Text PDFEpigenetic deregulation is of importance in tumorigenesis. In particular CpG islands (CGI), are frequently hypermethylated. Here, genome-wide DNA-methylation profiles of 480,000 CpGs in lung cancer cells were generated.
View Article and Find Full Text PDFBackground: Lung cancer is the leading cause of cancer-related deaths with 1.8 million new cases each year and poor 5-year prognosis. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby can promote cancer development and progression.
View Article and Find Full Text PDFLung cancer (LC) is the leading cause of cancer-related deaths worldwide. Early LC diagnosis is crucial to reduce the high case fatality rate of this disease. In this case-control study, we developed an accurate LC diagnosis test using retrospectively collected formalin-fixed paraffin-embedded (FFPE) human lung tissues and prospectively collected exhaled breath condensates (EBCs).
View Article and Find Full Text PDFThe tumor suppressor gene RASSF1A is epigenetically silenced in most human cancers. As a binding partner of the kinases MST1 and MST2, the mammalian orthologs of the Drosophila Hippo kinase, RASSF1A is a potential regulator of the Hippo tumor suppressor pathway. RASSF1A shares these properties with the scaffold protein SAV1.
View Article and Find Full Text PDFBreast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF).
View Article and Find Full Text PDFBackground: Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis.
View Article and Find Full Text PDFEpigenetic inactivation of tumor-related genes is an important characteristic in the pathology of human cancers, including melanomagenesis. We analyzed the epigenetic inactivation of Claudin 11 (CLDN11) in malignant melanoma (MM) of the skin, including six melanoma cell lines, 39 primary melanoma, 41 metastases of MM and 52 nevus cell nevi (NCN). CLDN11 promoter hypermethylation was found in 19 out of 39 (49%) of the primary MM and in 21 out of 41 (51%) of the MM metastases, but only in eight out of 52 (15%) of NCN (p = 0.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2015
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that arise from the medulla of the adrenal gland or the sympathetic ganglia and are characterized by the secretion of catecholamines. In 30-40% of patients, PCCs are genetically determined by susceptibility genes as various as RET, VHL, and NF1. We have analyzed the Ras-association domain family members (RASSFs) in PCCs regarding their inactivating promoter hypermethylation status.
View Article and Find Full Text PDFThe expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development.
View Article and Find Full Text PDFEpigenetic silencing through promoter hypermethylation is an important hallmark for the inactivation of tumor-related genes in carcinogenesis. Here we identified the ATP-binding cassette sub-family B member 4 (ABCB4) as a novel epigenetically silenced target gene. We investigated the epigenetic regulation of ABCB4 in 26 human lung, breast, skin, liver, head and neck cancer cells lines and in primary cancers by methylation and expression analysis.
View Article and Find Full Text PDFEpigenetic gene inactivation through promoter hypermethylation is an important aberration involved in the silencing of tumor-associated genes in cancer. Here we identified the apoptosis associated tyrosine kinase (AATK) as an epigenetically downregulated tumor related gene. We analyzed the epigenetic regulation of AATK in several human cancer cell lines and normal tissues by methylation and expression analysis.
View Article and Find Full Text PDF