Publications by authors named "Reiner Sustmann"

Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket.

View Article and Find Full Text PDF

The nitric oxide-specific fluorescent probe Fluorescent Nitric Oxide Cheletropic Trap (FNOCT) 8a was applied to intact tobacco (Nicotiana tabacum cv. Samsun) roots to detect sites of nitric oxide formation and NO distribution. Three week old tobacco seedlings were gently removed from the sand culture pots with intact roots and transferred to small Petri dishes, whose base was replaced by a thin coverslip.

View Article and Find Full Text PDF

The synthesis and the structural and spectroscopic characterization of nonfluorescent, pyrene-based cyclic o-quinodimethanes are reported. These compounds react efficiently with nitric oxide (NO) in a formal cheletropic manner, by which the fluorescent aromatic pyrene system is regenerated. The NO trapping capabilities and kinetics of the fluorescent nitric oxide cheletropic traps (FNOCTs) are assessed in THF and buffered aqueous solution by ESR, UV/Vis, and fluorescence spectroscopy, by employing NO solutions and NO released from N-diazeniumdiolates (NONOates).

View Article and Find Full Text PDF

In previous studies we reported on the catalase-like activity and antioxidative properties of a non-heme Fe(III)-tetraaza[14]annulene complex, 5,4-didehydro-5,9,14,18-tetraaza-di(2,2-dimethyl-[5,6]benzo[1,3]dioxolo)[a,h]cyclotetradecene--Fe(III) chloride (TAA-1/Fe). We proposed that intracellular application of the parent, iron-free tetraaza[14]annulene ligand, TAA-1, as precursor would allow antioxidative defense along two lines, i.e.

View Article and Find Full Text PDF

Zwitterionic diazeniumdiolates of the form RN[N(O)NO(-)](CH(2))(2)NH(2) (+)R, where R=CH(3) (1), (CH(2))(3)CH(3) (2), (CH(2))(5)CH(3) (3), and (CH(2))(7)CH(3) (4) were synthesized by reaction of the corresponding diamines with nitric oxide. Spectrophotometrically determined pK(a)(O) values, attributed to protonation at the terminal oxygen of the diazeniumdiolate group, show shifts to higher values in dependence of the chain lengths of R. The pH dependence of the decomposition of NO donors 1-3 was studied in buffered solution between pH 5 and 8 at 22 degrees C, from which pK(a)(N) values for protonation at the amino nitrogen, leading to release of NO, were estimated.

View Article and Find Full Text PDF

X-ray structures of the 13 different monofunctional heme catalases published to date were scrutinized in order to gain insight in the mechanism by which NADPH in Clade 3 catalases may protect the reactive ferryloxo intermediate Compound I (Cpd I; por (*+)Fe (IV)O) against deactivation to the catalytically inactive intermediate Compound II (Cpd II; porFe (IV)O). Striking similarities in the molecular network of the protein subunits encompassing the heme center and the surface-bound NADPH were found for all of the Clade 3 catalases. Unique features in this region are the presence of a water molecule (W1) adjacent to the 4-vinyl group of heme and a serine residue or a second water molecule hydrogen-bonded to both W1 and the carbonyl group of a threonine-proline linkage, with the proline in van der Waals contact with the dihydronicotinamide group of NADPH.

View Article and Find Full Text PDF

The development of enzyme mimics of catalase which decompose hydrogen peroxide to water and molecular oxygen according to the 2:1 stoichiometry of native catalase and in aqueous solution at pH 7 and at micromolar concentrations of the enzyme model and hydrogen peroxide is reported. For this purpose, iron(III) complexes of 1,4,8,11-tetraaza[14]annulenes are prepared by various procedures. Efficacious preparations utilize reaction of the [N4] macrocyles with FeII salts in the presence of triphenylamine, followed by gentle oxidation of the FeII complexes by molecular oxygen or by tris(4-bromophenyl)aminium hexachloroantimonate.

View Article and Find Full Text PDF

A new pyrene-based fluorescent probe for the determination of critical micelle concentrations (CMC) is described. The title compound 1 is obtained in five steps, starting from pyrene. Fluorescence spectroscopic properties of 1 are studied in homogeneous organic solvents and aqueous micellar solutions.

View Article and Find Full Text PDF

Non-heme iron(III) complexes of 14-membered tetraaza macrocycles have previously been found to catalytically decompose hydrogen peroxide to water and molecular oxygen, like the native enzyme catalase. Here the mechanism of this reaction is theoretically investigated by DFT calculations at the (U)B3LYP/6-31G* level, with focus on the reactivity of the possible spin states of the FeIII complexes. The computations suggest that H2O2 decomposition follows a homolytic route with intermediate formation of an iron(IV) oxo radical cation species (L.

View Article and Find Full Text PDF

Chelatable cellular iron, and chelatable mitochondrial iron in particular, has yet to be well characterized, so the overall strength with which these "loosely bound" iron ions (presumably mainly Fe(II)) are intracellularly/intramitochondrially bound is unclear. We have previously reported the first selective mitochondrial iron indicator: rhodamine B 4-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester (RPA). With this compound as a model, we have now developed two additional mitochondrial iron indicators with very different iron-binding affinities and have applied these to the study of the chelatable iron pool in the mitochondria of isolated rat liver cells.

View Article and Find Full Text PDF

In view of the important role arginine plays in living organisms as the free amino acid and, especially, as a residue in peptides and proteins, the homologous beta-homoarginines are central in our investigations of beta-peptides (Fig. 1). The preparation of beta2-homoarginine derivatives suitably protected for solution- or solid-phase peptide syntheses is described with full experimental detail (9 and 12 in Scheme 1).

View Article and Find Full Text PDF

During the past years, there has been increasing interest in endogenous nitric oxide storage compounds. Recently, we briefly reported on the ascorbate-dependent release of nitric oxide ((.)NO) from N-nitrosotryptophan derivatives.

View Article and Find Full Text PDF

Heme catalases are considered to degrade two molecules of H(2)O(2) to two molecules of H(2)O and one molecule of O(2) employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H(2)O(2) (relative to catalase concentration), adjusted by H(2)O(2)-generating systems. At a ratio of a H(2)O(2) flux (given in microM/min(- 1)) to catalase concentration (given in microM) of 10 min(- 1) and above, H(2)O(2) degradation occurred via the catalatic cycle.

View Article and Find Full Text PDF

Hydrogen peroxide is involved in many types of cell injury and exerts most of its injurious effects in conjunction with chelatable iron. We previously described a synthetic nonporphyrin iron-containing catalase mimic, TAA-1/Fe. Its ligand TAA-1 was designed for application in biological systems in which it is supposed to fulfill a dual task: it should chelate cellular labile iron and thus form the active catalase mimic, thereby decreasing levels of redox-active iron and enhancing the degradation of hydrogen peroxide.

View Article and Find Full Text PDF

The effect of pressure on the oxidation of hydroarenes 3-9 with 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ; 1 a) or o-chloranil (10), leading to the corresponding arenes, has been investigated. The activation volumes were determined from the pressure dependence of the rate constants of these reactions monitored by on-line UV/Vis spectroscopic measurements in an optical high-pressure cell (up to 3500 bar). The finding that they are highly negative and only moderately dependent on the solvent polarity (DeltaV( not equal ) = -13 to -25 in MTBE and -15 to -29 cm(3) mol(-1) in MeCN/AcOEt, 1:1) rules out the formation of ionic species in the rate-determining step and is good evidence for a hydrogen atom transfer mechanism leading to a pair of radicals in the rate-determining step, as was also suggested by kinetic measurements, studies of kinetic isotope effects, and spin-trapping experiments.

View Article and Find Full Text PDF

Background/aims: We previously described that the cold-induced apoptosis of cultured hepatocytes and liver endothelial cells is mediated by an increase in the cellular chelatable iron pool-in the absence of any increase in O(2)(.-)/H(2)O(2) formation. As this is an unusual mechanism, we here set out to assess whether an increase in cellular chelatable iron per se is sufficient to trigger cell injury/apoptosis.

View Article and Find Full Text PDF

We previously described that the cold-induced apoptosis of cultured hepatocytes is mediated by an increase in the cellular chelatable iron pool. We here set out to assess whether a mitochondrial permeability transition (MPT) is involved in cold-induced apoptosis. When cultured hepatocytes were rewarmed after 18 h of cold (4 degrees C) incubation in cell culture medium or University of Wisconsin solution, the vast majority of cells rapidly lost mitochondrial membrane potential.

View Article and Find Full Text PDF

The cycloaddition of thiobenzophenone S-methylide to thiobenzophenone, an experimentally well-known reaction, was studied, using (U)HF/3-21G* for finding stationary points and (U)B3LYP/6-31G*//(U)HF/3-21G* single-point calculations for energies. Some optimizations were performed by (U)B3LYP/ 6-31G* to check the reliability of the calculations. The comparison of the concerted pathways and stepwise reactions via C,C-biradicals and C,S-zwitterions showed that the formation of a tetraphenyl-substituted C,C-biradical and its ring closure to 4,4,5,5-tetraphenyl-1,3-dithiolane constitutes the energetically most probable pathway of product formation, despite the fact that the regioisomeric 2,2,4,4-tetraphenyl-substituted product is more favorable by 17 kcal mol(-1).

View Article and Find Full Text PDF

The yields of nitrate and nitrite from decomposition of peroxynitrite in phosphate buffer at 37 degrees C were determined in the pH range 1-14. The NO(2)(-)/NO(3)(-) yields showed a stepwise variation with pH, with inflection points at approximately pH 3.1, 5.

View Article and Find Full Text PDF

Enzymatic reduction of physiological Fe(III) complexes of the "labile iron pool" has not been studied so far. By use of spectrophotometric assays based on the oxidation of NAD(P)H and formation of [Fe(II) (1,10-phenanthroline)3]2+ as well as by utilizing electron paramagnetic resonance spectrometry, it was demonstrated that the NAD(P)H-dependent flavoenzyme lipoyl dehydrogenase (diaphorase, EC 1.8.

View Article and Find Full Text PDF

The regiochemistry of 1,3-dithiolanes obtained from thiocarbonyl ylides 9 and thiones 10 shows a striking dependence on substituents. Previously and newly performed experiments indicate that sterically hindered cycloalkanethione S-methylides and dialkylthioketone S-methylides react with alicyclic and aliphatic thiones to give the 2,2,4,4-tetrasubstituted 1,3-dithiolanes 11 exclusively. Aryl groups in one or both reactants lead to a preference for, or even complete formation of, 4,4,5,5-tetrasubstituted 1,3-dithiolanes 12.

View Article and Find Full Text PDF

The mechanisms of cycloaddition of thioformaldehyde S-methylide and thioacetone S-methylide, as models for an alkyl-substituted ylide, to thioformaldehyde and thioacetone, as well as to ethene as a model for a C=C double bond have been studied by ab initio calculations. Restricted and unrestricted B3LYP/6-31G* calculations were performed for the geometries of ground states, transition structures, and intermediates. Although basis sets with more polarization functions were tested, the 6-31G* basis set was applied throughout.

View Article and Find Full Text PDF

It has been known for quite some time that tetrahydrobiopterin (H4B) is prone to autoxidation in the presence of molecular oxygen. Evidence has been presented that in this process superoxide radicals may be released, although their intermediacy never has been directly proven. In the present study, the autoxidation of H4B was reinvestigated with the aim to find direct evidence for superoxide formation.

View Article and Find Full Text PDF

A very small, predominantly cytosolic pool of iron ions plays the central role in the cellular iron metabolism. It links the cellular iron uptake with the insertion of the metal in iron storage proteins and other essential iron-containing molecules. Furthermore, this transit ('labile') pool is essentially involved in the pathogenesis of a number of diseases.

View Article and Find Full Text PDF

Nitrogen dioxide (*NO2) is an oxidizing free radical which can initiate a variety of destructive pathways in living systems, and several diseases are suspected to be connected with both exogenously and endogenously formed *NO2. Peroxynitrite (ONOO-/ONOOH) is believed to be an important endogenous source of *NO2 radicals, but other sources, among them enzymatically ones, have been identified recently. It also became clear during the last few years that in vivo formation of 3-nitrotyrosine strictly depends on the availability of *NO2 radicals.

View Article and Find Full Text PDF