Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas () to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions.
View Article and Find Full Text PDFPlasticity can put evolution on repeat if development causes species to generate similar morphologies in similar environments. lizards offer the opportunity to put this role of developmental plasticity to the test. Following colonization of the four Greater Antillean islands, lizards independently and repeatedly evolved six ecomorphs adapted to manoeuvring different microhabitats.
View Article and Find Full Text PDFPhenotypic responses to a novel or extreme environment are initially plastic, only later to be followed by genetic change. Whether or not environmentally induced phenotypes are sufficiently recurrent and fit to leave a signature in adaptive evolution is debated. Here, we analyze multivariate data from 34 plant reciprocal transplant studies to test: (1) if plasticity is an adaptive source of developmental bias that makes locally adapted populations resemble the environmentally induced phenotypes of ancestors; and (2) if plasticity, standing phenotypic variation and genetic divergence align during local adaptation.
View Article and Find Full Text PDFDevelopmental plasticity looks like a promising bridge between ecological and developmental perspectives on evolution. Yet, there is no consensus on whether plasticity is part of the explanation for adaptive evolution or an optional "add-on" to genes and natural selection. Here, we suggest that these differences in opinion are caused by differences in the simplifying assumptions, and particular idealizations, that enable evolutionary explanation.
View Article and Find Full Text PDFEnvironmentally induced phenotypes have been proposed to initiate and bias adaptive evolutionary change toward particular directions. The potential for this to happen depends in part on how well plastic responses are aligned with the additive genetic variance and covariance in traits. Using meta-analysis, we demonstrate that plastic responses to novel environments tend to occur along phenotype dimensions that harbor substantial amounts of additive genetic variation.
View Article and Find Full Text PDFOrganisms that regularly encounter stressful environments are expected to use cues to develop an appropriate phenotype. Water fleas ( spp.) are exposed to toxic cyanobacteria during seasonal algal blooms, which reduce growth and reproductive investment.
View Article and Find Full Text PDFSocial interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection.
View Article and Find Full Text PDFDespite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects.
View Article and Find Full Text PDFAn individual's foraging behaviour and time allocated to feeding have direct consequences for its fitness. Despite much research on population-level foraging decisions, few studies have investigated individual differences in fine-scale daily foraging patterns among wild animals. Here, we explore the consistency and plasticity of feeding tactics of individual great tits (Parus major) and blue tits (Cyanistes caeruleus), using a grid of 65 automated feeding stations in a 385-ha woodland, during three winters.
View Article and Find Full Text PDFJ Exp Zool A Ecol Genet Physiol
July 2016
Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations.
View Article and Find Full Text PDFBoth social and ecological factors influence population process and structure, with resultant consequences for phenotypic selection on individuals. Understanding the scale and relative contribution of these two factors is thus a central aim in evolutionary ecology. In this study, we develop a framework using null models to identify the social and spatial patterns that contribute to phenotypic structure in a wild population of songbirds.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2015
Social and genetic mating systems play an important role in natural and sexual selection, as well as in the dynamics of populations. In socially monogamous species different genetic mating patterns appear when individuals mate outside the breeding pair within a breeding season (extra-pair mating) or when they change partners between two breeding seasons (widowing or divorce). Divorce can be defined as having occurred when two previously paired individuals are alive during the next breeding season and at least one of them has re-mated with a new partner.
View Article and Find Full Text PDFIndividuals are typically not randomly distributed in space; consequently ecological and evolutionary theory depends heavily on understanding the spatial structure of populations. The central challenge of landscape genetics is therefore to link spatial heterogeneity of environments to population genetic structure. Here, we employ multivariate spatial analyses to identify environmentally induced genetic structures in a single breeding population of 1174 great tits Parus major genotyped at 4701 single-nucleotide polymorphism (SNP) loci.
View Article and Find Full Text PDFIt is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8.
View Article and Find Full Text PDF