Publications by authors named "Reina Onishi"

Cholesterol (Chol) conjugation to the 5' or 3' end of antisense oligonucleotide (ASO) enables delivery to the liver, and Chol conjugation at the gap region can also be expected to improve delivery to the liver. In this study, we synthesized ASOs bearing the Chol-conjugated thiono triester and evaluated their activity and hepatic accumulation. We found that Chol conjugations at the gap region improved in vitro activity and hepatic accumulation when compared to unconjugated ASOs.

View Article and Find Full Text PDF

TriantennaryN-acetyl galactosamine (GalNAc, GN3) and lipophilic ligands such as cholesterol andα-tocopherol conjugations dramatically improve the distribution and efficacy of second-generation antisense oligonucleotides (ASOs) in the whole liver. To characterize ligands for delivery to liver cells based on pharmacokinetics and efficacy, we used a locked nucleic acid gapmer of ASO targeting apolipoprotein B as a model compound and evaluated the amount of ASO and apolipoprotein B mRNA in the whole liver, hepatocytes, and nonparenchymal (NP) cells as well as plasma total cholesterol after administration of ASO conjugated with these ligands to mice. Compared with unconjugated ASO, GN3 conjugation increased the amount (7-fold) and efficacy (more than 10-fold) of ASO in hepatocytes only and showed higher efficacy than the increased rate of the amount of ASO.

View Article and Find Full Text PDF

In the present study, we developed an assay to evaluate the kinetic binding properties of the unconjugated antisense oligonucleotide (ASO) and lipophilic and hydrophilic ligands conjugated ASOs to mouse and human serum albumin, and lipoproteins using surface plasmon resonance (SPR). The lipophilic ligands conjugated ASOs showed clear affinity to the albumins and lipoproteins, while the unconjugated and hydrophilic ligand conjugated ASOs showed no interaction. The SPR method showed reproducible immobilization of albumins and lipoproteins as ligands on the sensor chip, and reproducible affinity kinetic parameters of interaction of ASOs conjugated with the ligands could be obtained.

View Article and Find Full Text PDF