Publications by authors named "Reima Leinonen"

Insect declines are raising alarms regarding cascading effects on ecosystems, especially as many insectivorous bird populations are also declining. Here, we leveraged long-term monitoring datasets across Finland to investigate trophic dynamics between functional groups of moths and birds in forested habitats. We reveal a positive association between the biomass of adult- or egg-overwintering moths and the biomasses of resident and long-distance migrant birds reliant on caterpillars as breeding-season food in the north-boreal zone.

View Article and Find Full Text PDF

Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies.

View Article and Find Full Text PDF

Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions.

View Article and Find Full Text PDF

Spatially distinct pairs of sites may have similarly fluctuating population dynamics across large geographical distances, a phenomenon called spatial synchrony. However, species rarely exist in isolation, but rather as members of interactive communities, linked with other communities through dispersal (i.e.

View Article and Find Full Text PDF

The magnitude and direction of phenological shifts from climate warming could be predictably variable across the planet depending upon the nature of physiological controls on phenology, the thermal sensitivity of the developmental processes and global patterns in the climate warming. We tested this with respect to the flight phenology of adult nocturnal moths (3.33 million captures of 334 species) that were sampled at sites in southern and northern Finland during 1993-2012 (with years 2005-2012 treated as an independent model validation data set).

View Article and Find Full Text PDF

Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change.

View Article and Find Full Text PDF