Publications by authors named "Reiko Yamazoe"

African swine fever (ASF) is an infectious Suidae disease caused by the ASF virus (ASFV). Adaptation to less susceptible, non-target host cells is one of the most common techniques used to attenuate virulent viruses. However, this may induce many mutations and large-scale rearrangements in the viral genome, resulting in immunostimulatory potential loss of the virus in vivo.

View Article and Find Full Text PDF

We experimentally infected pigs with the African swine fever virus (ASFV) Armenia 07 strain (genotype II) to analyze the effect of different dose injections on clinical manifestations, virus-shedding patterns, histopathology, and transmission dynamics by direct contact. Each three pigs and four pigs were injected intramuscularly with 0.1 fifty percent hemadsorbing doses (HAD)/ml, 10 HAD/ml and 10 HAD/ml of ASFV Armenia 07 strain, respectively.

View Article and Find Full Text PDF

We examined the pathogenesis of the attenuated foot-and-mouth disease virus (FMDV) O/JPN/2000 in pigs. The virus used in this study was passaged three times in primary bovine kidney (BK) cells and once in baby hamster kidney-21 (BHK-21) cells after isolation. A plaque assay demonstrated that this virus exhibited the small plaque (SP) phenotype.

View Article and Find Full Text PDF

We examined the histological distribution of the lesions and the viral antigen associated with the virus and virus RNA in multisystemic organs in the early stages of foot-and-mouth disease virus (FMDV) O/JPN/2010 infection in pigs. Characteristic lesions commonly observed in pigs with FMD arise following inoculation with 10 tissue culture infectious dose (TCID)/ml of FMDV O/JPN/2010 in pigs at 3 days post inoculation (dpi) by a natural infectious route. However, none of the six pigs inoculated with 10 TCID/ml of FMDV O/JPN/2010 showed any evidence of infection up to 6 dpi.

View Article and Find Full Text PDF

The effectiveness of a vaccine preserved for emergency use in Japan was analyzed under experimental conditions using cows and pigs in order to retrospectively evaluate the effectiveness of the emergency vaccination performed in the 2010 epidemic in Japan. Cows and pigs were administered a vaccine preserved for emergency use in Japan at 3 or 30 days before virus infection (dbv) and were subsequently infected with the foot-and-mouth disease virus (FMDV) O/JPN/2010, which was isolated in the 2010 epidemic in Japan. All animals vaccinated at 30 dbv and one of three pigs vaccinated at 3 dbv showed no vesicular lesions during the experimental period.

View Article and Find Full Text PDF

An ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease (FMDV) was further evaluated using sequentially collected serum samples of experimentally infected animals, because the sensitivity of the kit used in a previous study was significantly low in field animals. The kit fully detected antibodies in infected animals without vaccination; however, the first detections of antibodies by the kit were later than those by the liquid-phase blocking ELISA that is used for serological surveillance in the aftermath of outbreaks in Japan, for detection of antibodies to structural proteins of FMDV. Additionally, although the kit effectively detected antibodies in infected cattle with vaccination, there were several infected pigs with vaccination for which the kit did not detect antibodies during the experimental period.

View Article and Find Full Text PDF

We developed a lateral flow strip using monoclonal antibodies (MAbs) which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV). This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3) to 10(4) of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden), which can detect all seven serotypes of FMDV, but does not distinguish them.

View Article and Find Full Text PDF

The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-α(v)β(6) have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-α(v)β(6) cells has not been evaluated using clinical samples other than epithelial materials.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) infection was successfully initiated in pigs by intraoral inoculation of both 10(6) and 10(3) TCID50 of FMDV O/JPN/2010 isolated from the 2010 epidemic in Japan. By intranasal inoculation, infection was established in pigs with 10(6) TCID50 of the isolate, but not with 10(3) TCID50 of the isolate. In the pigs inoculated with 10(6) TCID50 of the isolate, viruses and viral RNAs were obtained earlier from the pigs inoculated by the intraoral route than from the pigs inoculated by the intranasal route.

View Article and Find Full Text PDF

In this study, we carried out experimental infections in cattle and goats using a foot-and-mouth disease virus (FMDV) isolate from the 2010 epidemic in Japan to analyze clinical manifestations, virus-shedding patterns and antibody responses in the animals. We found that the FMDV O/JPN/2010 isolate is virulent in cattle and goats, produces clinical signs, is spread efficiently by direct contact within the same species, and is persistently infectious in cattle. Quantitative analysis of levels of viral RNA in the tissues of cattle and goats infected with the isolate showed that the pharyngeal region is an important major target of the FMDV O/JPN/2010.

View Article and Find Full Text PDF

The availability of the fetal goat tongue cell line ZZ-R 127 for the isolation of Foot-and-mouth disease virus (FMDV) has not been evaluated using clinical samples other than epithelial suspensions. Therefore, in the current study, the availability of ZZ-R 127 cells for the isolation of FMDV was evaluated using clinical samples (e.g.

View Article and Find Full Text PDF

Monoclonal antibody (MAb)-based sandwich direct enzyme-linked immunosorbent assay (MSD-ELISA) methods that can detect foot-and-mouth disease virus (FMDV) antigens, both multiserotype (MSD-ELISA/MS) (for O, A, C, and Asia 1) and single-serotype (MSD-ELISA/SS) (for O, A, and Asia 1, specifically), were developed. MAb 1H5 was used as an antigen-trapping antibody that reacted with all seven serotypes of FMDV. The MAbs 71F2, 70C4, 16C6, and 7C2 were used as peroxidase-labeled detecting antibodies for multiple serotypes (O, A, C, and Asia 1), type O, type A, and type Asia 1, respectively, in both MSD-ELISA/MS and MSD-ELISA/SS.

View Article and Find Full Text PDF

Liquid-phase blocking enzyme-linked immunosorbent assay (LPBE) using the neutralizing monoclonal antibody (mAb) sandwich method (M-LPBE) for detection of Foot-and-mouth disease virus (FMDV) type O antibodies was developed. Two neutralizing mAbs, 72C1 and 65H6, were raised against the FMDV O/JPN/2000 strain, and used as trapping and peroxidase-labeled detecting antibodies, respectively. Sera from animals experimentally infected with FMDV showed specific positive results by M-LPBE, which were correlated with the results of the virus neutralization test (VNT).

View Article and Find Full Text PDF

Baculovirus-expressed foot-and-mouth disease virus (FMDV) nonstructural proteins 2C and 3D were used as the antigens in a western blotting assay. This assay allowed for differentiation of FMDV-infected pigs from vaccinated pigs. Serial studies were performed using sera collected from experimentally infected and vaccinated pigs.

View Article and Find Full Text PDF

Four outbreaks of foot-and-mouth disease (FMD) occurred from March to May 2000 in Miyazaki and Hokkaido Prefectures, Japan. FMD virus isolation was achieved by sampling probang materials from Japanese Black cattle in the third case found in Miyazaki Prefecture. The probang materials were inoculated to bovine kidney (BK) and bovine thyroid cell cultures.

View Article and Find Full Text PDF