Publications by authors named "Reiko Nakao"

This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15.

View Article and Find Full Text PDF

We previously reported that intramuscular injections of ubiquitin ligase CBLB inhibitory pentapeptide (Cblin; Asp-Gly-pTyr-Met-Pro) restored lost muscle mass caused by sciatic denervation. Here, we detected Cblin on the basolateral side of Caco-2 cells after being placed on the apical side, and found that cytochalasin D, a tight junction opener, enhanced Cblin transport. Orally administered Cblin was found in rat plasma, indicating that intact Cblin was absorbed in vitro and in vivo.

View Article and Find Full Text PDF

Recent studies show that muscle mass and metabolic function are interlinked. Muscle RING finger 1 (MuRF1) is a critical muscle-specific ubiquitin ligase associated with muscle atrophy. Yet, the molecular target of MuRF1 in atrophy and aging remains unclear.

View Article and Find Full Text PDF

Ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) play a critical role in nonloading-mediated skeletal muscle atrophy: Cbl-b ubiquitinates insulin receptor substrate-1 (IRS-1), leading to its degradation and a resulting loss in muscle mass. We reported that intramuscular injection of a pentapeptide, DGpYMP, which acts as a mimic of the phosphorylation site in IRS-1, significantly inhibited denervation-induced skeletal muscle loss. In order to explore the possibility of the prevention of muscle atrophy by diet therapy, we examined the effects of oral administration of transgenic rice containing Cblin (Cbl-b inhibitor) peptide (DGYMP) on denervation-induced muscle mass loss in frogs.

View Article and Find Full Text PDF

Glucocorticoids are the drugs most commonly used to manage inflammatory diseases. However, they are prone to inducing muscle atrophy by increasing muscle proteolysis and decreasing protein synthesis. Various studies have demonstrated that antioxidants can mitigate glucocorticoid-induced skeletal muscle atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • Certain influenza viruses require the cleavage of their hemagglutinin (HA) by host cell proteases to trigger infection, with different proteases acting on distinct HA motifs.
  • The study focuses on the human protease MSPL, revealing its crystal structure in complex with a substrate-analog inhibitor, highlighting key interactions that facilitate its enzymatic function.
  • Insights from MSPL's structure led to a model for another protease, TMPRSS2, which is crucial for activating the spike protein of SARS-CoV-2, potentially guiding the development of new COVID-19 treatments.
View Article and Find Full Text PDF

Ketogenic diets (KD) that are very high in fat and low in carbohydrates are thought to simulate the metabolic effects of starvation. We fed mice with a KD for seven days to assess the underlying mechanisms of muscle wasting induced by chronic starvation. This diet decreased the weight of the gastrocnemius (Ga), tibialis anterior (TA) and soleus (Sol) muscles by 23%, 11% and 16%, respectively.

View Article and Find Full Text PDF

To investigate whether heat-killed Lactobacillus curvatus CP2998 (CP2998) inhibits glucocorticoid-induced myotube atrophy which is associated with the ubiquitin-proteasome system, mouse skeletal muscle C2C12 myotubes were treated with dexamethasone (DEX) in the presence or absence of CP2998. DEX exposure significantly decreased myotube diameters and increased mRNA expression levels of MuRF1 and MAFbx, E3 ubiquitin ligases. CP2998 treatment restored myotube diameters and dose dependently decreased mRNA expression levels of these E3 ubiquitin ligases.

View Article and Find Full Text PDF

Brain and muscle arnt-like protein 1 (BMAL1), is a transcription factor known to regulate circadian rhythm. BMAL1 was originally characterized by its high expression in the skeletal muscle. Since the skeletal muscle is the dominant organ system in energy metabolism, the possible functions of BMAL1 in the skeletal muscle include the control of metabolism.

View Article and Find Full Text PDF

Inappropriate eating habits such as skipping breakfast and eating late at night are associated with risk for abnormal weight-gain and adiposity. We previously reported that time-imposed feeding during the daytime (inactive phase) induces obesity and metabolic disorders accompanied by physical inactivity in mice. The present study compares metabolic changes induced in mice by time-imposed feeding under voluntary wheel-running (RW) and sedentary (SED) conditions to determine the effects of voluntary wheel-running activity on obesity induced in mice by feeding at inappropriate times.

View Article and Find Full Text PDF

Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009).

View Article and Find Full Text PDF

We recently found that the mRNA expression of Slc25a25, a Ca-sensitive ATP carrier in the inner mitochondrial membrane, fluctuates in a circadian manner in mouse skeletal muscle. We showed here that the circadian expression of muscle Slc25a25 was damped in Clock mutant, muscle-specific Bmal1-deficient, and global Bmal1-deficient mice. Furthermore, a ketogenic diet (KD) that induces time-of-day-dependent hypothermia (torpor), induced Slc25a25 mRNA expression in skeletal muscle.

View Article and Find Full Text PDF

Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis is a popular method for the measurement of mRNA expression level and is a critical tool for basic research. The identification of suitable reference genes that are stable and not affected by experimental conditions is a critical step in the accurate normalization of RT-PCR. On the other hand, the levels of numerous transcripts exhibit circadian oscillation in various peripheral tissues and it is thought to be regulated by feeding rhythms in addition to the molecular circadian clock.

View Article and Find Full Text PDF

Background: The circadian clock regulates various physiological and behavioral rhythms such as feeding and locomotor activity. Feeding at unusual times of the day (inactive phase) is thought to be associated with obesity and metabolic disorders in experimental animals and in humans.

Objective: The present study aimed to determine the underlying mechanisms through which time-of-day-dependent feeding influences metabolic homeostasis.

View Article and Find Full Text PDF

Cbl-b is a RING-type ubiquitin ligase. Previously, we showed that Cbl-b-mediated ubiquitination and proteosomal degradation of IRS-1 contribute to muscle atrophy caused by unloading stress. The phospho-pentapeptide DGpYMP (Cblin) mimics Tyr612-phosphorylated IRS-1 and inhibits the Cbl-b-mediated ubiquitination and degradation of IRS-1 in vitro and in vivo.

View Article and Find Full Text PDF

The central circadian clock in the suprachiasmatic nucleus of the hypothalamus synchronizes peripheral clocks through neural and humoral signals in most mammalian tissues. Here, we analyzed the effects of unilateral sciatic denervation on the expression of circadian clock- and clock-controlled genes in the gastrocnemius muscles of mice twice per day on days 0, 3, 7, 9, 11 and 14 after denervation and six times on each of days 7 and 28 after denervation to assess the regulation mechanism of the circadian clock in skeletal muscle. Sciatic denervation did not affect systemic circadian rhythms since core body temperature (Day 7), corticosterone secretion (Days 7 and 28), and hepatic clock gene expression remained intact (Days 7 and 28).

View Article and Find Full Text PDF

A DGpYMP peptide mimetic of tyrosine(608)-phosphorylated insulin receptor substrate-1 (IRS-1), named Cblin, was previously shown to significantly inhibit Cbl-b-mediated IRS-1 ubiquitination. In the present study, we developed N-myristoylated Cblin and investigated whether it was effective in preventing glucocorticoid-induced muscle atrophy. Using HEK293 cells overexpressing Cbl-b, IRS-1 and ubiquitin, we showed that the 50% inhibitory concentrations of Cbl-b-mediated IRS-1 ubiquitination by N-myristoylated Cblin and Cblin were 30 and 120 μM, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - Epidemiologic studies suggest that whole grain consumption can lower risks for type 2 diabetes, heart disease, and overall mortality, but the exact reasons are still debated.
  • - This research evaluated the impact of alkylresorcinols from wheat bran on metabolic issues in mice fed a high-fat, high-sucrose diet, revealing a 31% reduction in weight gain and improvements in blood glucose and insulin resistance.
  • - Alkylresorcinols did not change energy intake but effectively decreased triglyceride buildup in the liver and enhanced insulin signaling, contributing to better metabolic health in the mice without altering blood sugar production or carbohydrate digestion.
View Article and Find Full Text PDF

Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED) conditions or given free access to a running-wheel (RW) for four weeks.

View Article and Find Full Text PDF

The circadian clock regulates various behavioral and physiological rhythms in mammals. Circadian changes in olfactory functions such as neuronal firing in the olfactory bulb (OB) and olfactory sensitivity have recently been identified, although the underlying molecular mechanisms remain unknown. We analyzed the temporal profiles of glycan structures in the mouse OB using a high-density microarray that includes 96 lectins, because glycoconjugates play important roles in the nervous system such as neurite outgrowth and synaptogenesis.

View Article and Find Full Text PDF

Introduction: Immobilization induced by experimental denervation leads to rapid and progressive alterations in structural and biochemical properties of skeletal muscle. Real-time reverse transcription-polymerase chain reaction (RT-PCR) is a popular method of elucidating the molecular mechanisms involved in muscle atrophy. Identification of suitable reference genes that are not affected by experimental conditions is a critical step in accurate normalization of real-time RT-PCR.

View Article and Find Full Text PDF

Many inflammatory and autoimmune diseases are treated using synthetic glucocorticoids. However, excessive glucocorticoid can often cause unpredictable effects including muscle atrophy. Endogenous glucocorticoid levels robustly fluctuate in a circadian manner and peak just before the onset of the active phase in both humans and nocturnal rodents.

View Article and Find Full Text PDF

Deficiency of the Cbl-b ubiquitin ligase gene activates macrophages in mice. This study aimed to elucidate the pathophysiological roles of macrophages in muscle degeneration/regeneration in Cbl-b-deficient mice. We examined immune cell infiltration and cytokine expression in cardiotoxin-injected tibialis anterior muscle of Cbl-b-deficient mice.

View Article and Find Full Text PDF

The effects of quercetin (1) were investigated on disused muscle atrophy using mice that underwent tail suspension. Periodic injection of 1 into the gastrocnemius muscle suppressed muscle weight loss and ubiquitin ligase expression. Compound 1 reduced the enhancement of lipid peroxidation in the muscle.

View Article and Find Full Text PDF