Publications by authors named "Reiko Nakanishi-Itai"

Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear.

View Article and Find Full Text PDF

Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses.

View Article and Find Full Text PDF

Iron (Fe) is an essential element for most living organisms. To acquire sparingly soluble Fe from the rhizosphere, rice roots rely on two Fe acquisition pathways. The first of these pathways involves Fe(III) chelators specific to graminaceous plants, the mugineic acid family phytosiderophores, and the second involves absorption of Fe(2+).

View Article and Find Full Text PDF

The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes.

View Article and Find Full Text PDF

Several metals are essential nutrients for plants. However, they become toxic at high levels and deleteriously affect crop yield and quality. We recently reported the spatial gene expression profiles of iron (Fe)-deficient and cadmium (Cd)-stressed rice using laser microdissection and microarray analysis.

View Article and Find Full Text PDF

Background: The rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs). To clarify the onset of Fe deficiency, changes in gene expression were examined by microarray analysis using rice roots at 3, 6, 9, 12, 24, and 36 h after the onset of Fe-deficiency treatment.

Results: More than 1000 genes were found to be upregulated over a time course of 36 h.

View Article and Find Full Text PDF

Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2.

View Article and Find Full Text PDF

Although the genes involved in metal homeostasis have been investigated over the past few decades, many genes related to metal homeostasis remain uncharacterized, and a comprehensive analysis of the expression of these genes is required. In the present study, we investigated the spatial gene expression profile of iron (Fe)-deficient and cadmium (Cd)-stressed Oryza sativa (rice) using laser microdissection and microarray analysis. Roots of Fe-deficient and Cd-stressed rice were separated into the vascular bundle, cortex, and epidermis plus exodermis.

View Article and Find Full Text PDF

Iron is essential for most living organisms and its availability often determines survival and proliferation. The Oryza sativa (rice) transcription factor IDEF1 plays a crucial role in regulating iron deficiency-induced genes involved in iron homeostasis. In the present report, we found characteristic histidine-asparagine repeat and proline-rich regions in IDEF1 and its homolog in Hordeum vulgare (barley), HvIDEF1.

View Article and Find Full Text PDF

Background And Aims: Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism.

View Article and Find Full Text PDF

Mitochondria utilize iron (Fe), but the proteins involved in mitochondrial Fe regulation are not characterized in plants. We cloned and characterized a mitochondrial iron-regulated (MIR) gene in rice involved in Fe homeostasis. MIR, when expressed in tobacco BY-2 cells, was localized to the mitochondria.

View Article and Find Full Text PDF

Higher plants maintain iron homeostasis by regulating the expression of iron (Fe)-related genes in accordance with Fe availability. The transcription factor IDEF1 regulates the response to Fe deficiency in Oryza sativa (rice) by recognizing CATGC sequences within the Fe deficiency-responsive cis-acting element IDE1. To investigate the function of IDEF1 in detail, we analyzed the response to Fe deficiency in transgenic rice plants exhibiting induced or repressed IDEF1 expression.

View Article and Find Full Text PDF

Typical for a graminaceous plant, barley secretes mugineic acid-family phytosiderophores (MAs) to acquire iron (Fe). Under Fe-deficient conditions, MAs secretion from barley roots increases markedly. Secretion shows a diurnal pattern, with a clear peak 2-3 h after sunrise and cessation within a few hours.

View Article and Find Full Text PDF

Iron is essential for most living organisms, and thus iron deficiency poses a major abiotic stress in crop production. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of gene regulation under iron deficiency remain largely unknown. We identified a novel transcription factor of rice and barley, IDEF2, which specifically binds to the iron deficiency-responsive cis-acting element 2 (IDE2) by yeast one-hybrid screening.

View Article and Find Full Text PDF

Iron is essential for most living organisms and is often the major limiting nutrient for normal growth. Plants induce iron utilization systems under conditions of low iron availability, but the molecular mechanisms of gene regulation under iron deficiency remain largely unknown. We identified the rice transcription factor IDEF1, which specifically binds the iron deficiency-responsive cis-acting element IDE1.

View Article and Find Full Text PDF

Glutathione reductase (GR) plays an important role in the response to biotic and abiotic stresses in plants. We studied the expression patterns and enzyme activities of GR in graminaceous plants under Fe-sufficient and Fe-deficient conditions by isolating cDNA clones for chloroplastic GR (HvGR1) and cytosolic GR (HvGR2) from barley. We found that the sequences of GR1 and GR2 were highly conserved in graminaceous plants.

View Article and Find Full Text PDF

Iron (Fe) deficiency is a major abiotic stress in crop production. Although responses to Fe deficiency in graminaceous plants, such as increased production and secretion of mugineic acid family phytosiderophores (MAs), have been described, the gene regulation mechanisms related to these responses are largely unknown. To elucidate the regulation mechanisms of the genes related to Fe acquisition in graminaceous plants, we characterized the Fe-deficiency-inducible basic helix-loop-helix transcription factor OsIRO2 in rice.

View Article and Find Full Text PDF

Under conditions of iron deficiency, graminaceous plants induce the expression of genes involved in the biosynthesis of mugineic acid family phytosiderophores. We previously identified the novel cis-acting elements IDE1 and IDE2 (iron-deficiency-responsive element 1 and 2) through promoter analysis of the barley (Hordeum vulgare L.) iron-deficiency-inducible IDS2 gene in tobacco (Nicotiana tabacum L.

View Article and Find Full Text PDF

To clarify the molecular mechanism that regulates iron (Fe) acquisition in graminaceous plants, a time-course analysis of gene expression during Fe deficiency stress was conducted using a rice 22K oligo-DNA microarray. Twenty-one genes for proteins that function in gene regulation were induced by Fe deficiency. Of these genes, a putative basic helix-loop-helix (bHLH) transcription factor gene, named OsIRO2, was strongly expressed in both roots and shoots during Fe deficiency stress.

View Article and Find Full Text PDF

Rice plants (Oryza sativa L.) utilize the iron chelators known as mugineic acid family phytosiderophores (MAs) to acquire iron from the rhizosphere. Synthesis of MAs and uptake of MA-chelated iron are strongly induced under conditions of iron deficiency.

View Article and Find Full Text PDF

The molecular mechanisms of plant responses to iron (Fe) deficiency remain largely unknown. To identify the cis-acting elements responsible for Fe-deficiency-inducible expression in higher plants, the barley IDS2 (iron deficiency specific clone no. 2) gene promoter was analyzed using a transgenic tobacco system.

View Article and Find Full Text PDF