Publications by authors named "Reiko Minakami"

NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22 and are regulated by soluble regulatory proteins: p47, its related organizer NOXO1; p67, its related activator NOXA1; p40; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47, p67, and GTP-bound Rac.

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2), a member of reactive oxygen species (ROS), plays diverse physiological roles including host defense and cellular signal transduction. During ingestion of invading microorganisms, professional phagocytes such as macrophages release H2O2 specifically into the phagosome to direct toxic ROS toward engulfed microbes. Although H2O2 is considered to exert discrete effects in living systems depending on location of its production, accumulation, and consumption, there have been limitations of techniques for probing this oxygen metabolite with high molecular specificity at the subcellular resolution.

View Article and Find Full Text PDF

Neutrophils play an essential role via phagocytosis in host defense against microbial infections. However, little is known about molecular mechanisms underlying phagocytosis in neutrophils, because of the difficulty in genetically manipulating these cells. Here, we provide the first comprehensive description of phospholipid metabolism during phagocytosis in human neutrophils, which we have efficiently transfected with cDNAs encoding lipid-probing protein modules.

View Article and Find Full Text PDF

Rac1 and Rac2, which belong to the Rho subfamily of Ras-related GTPases, play an essential role in activation of gp91phox/Nox2 (cytochrome b-245, beta polypeptide; also known as Cybb), the catalytic core of the superoxide-producing NADPH oxidase in phagocytes. Rac1 also contributes to activation of the non-phagocytic oxidases Nox1 (NADPH oxidase 1) and Nox3 (NADPH oxidase 3), each related closely to gp91phox/Nox2. It has remained controversial whether the insert region of Rac (amino acids 123-135), unique to the Rho subfamily proteins, is involved in gp91phox/Nox2 activation.

View Article and Find Full Text PDF

The superoxide-producing NADPH oxidase in phagocytes is crucial for host defence; its catalytic core is the membrane-integrated protein gp91phox [also known as Nox2 (NADPH oxidase 2)], which forms a stable heterodimer with p22phox. Activation of the oxidase requires membrane translocation of the three cytosolic proteins p47phox, p67phox and the small GTPase Rac. At the membrane, these proteins assemble with the gp91phox-p22phox heterodimer and induce a conformational change of gp91phox, leading to superoxide production.

View Article and Find Full Text PDF

Cardiac troponin T (cTnT) is a component of the troponin (Tn) complex in cardiac myocytes, and plays a regulatory role in cardiac muscle contraction by anchoring two other Tn components, troponin I (TnI) and troponin C, to tropomyosin (Tm) on the thin filaments. In order to determine the in vivo function of cTnT, we created a null cTnT allele in the mouse TNNT2 locus. In cTnT-deficient (cTnT(-/-)) cardiac myocytes, the thick and thin filaments and alpha-actinin-positive Z-disk-like structures were not assembled into sarcomere, causing early embryonic lethality due to a lack of heartbeats.

View Article and Find Full Text PDF

We created knock-in mice in which a deletion of 3 base pairs coding for K210 in cardiac troponin (cTn)T found in familial dilated cardiomyopathy patients was introduced into endogenous genes. Membrane-permeabilized cardiac muscle fibers from mutant mice showed significantly lower Ca(2+) sensitivity in force generation than those from wild-type mice. Peak amplitude of Ca(2+) transient in cardiomyocytes was increased in mutant mice, and maximum isometric force produced by intact cardiac muscle fibers of mutant mice was not significantly different from that of wild-type mice, suggesting that Ca(2+) transient was augmented to compensate for decreased myofilament Ca(2+) sensitivity.

View Article and Find Full Text PDF

The superoxide-producing phagocyte NADPH oxidase is activated during phagocytosis to destroy ingested microbes. The adaptor protein p40phox associates via the PB1 domain with the essential oxidase activator p67phox, and is considered to function by recruiting p67phox to phagosomes; in this process, the PX domain of p40phox binds to phosphatidylinositol 3-phosphate [PtdIns(3)P], a lipid abundant in the phagosomal membrane. Here we show that the PtdIns(3)P-binding activity of p40phox is normally inhibited by the PB1 domain both in vivo and in vitro.

View Article and Find Full Text PDF

The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays a crucial role in host defense by neutrophils and macrophages. When cells ingest invading microbes, this enzyme becomes activated to reduce molecular oxygen to superoxide, a precursor of microbicidal oxidants, in the phagosome. The catalytic core of the oxidase is membrane-bound cytochrome b558, which comprises gp91phox and p22phox.

View Article and Find Full Text PDF

Homer family proteins are encoded by three genes, homer1, 2 and 3. Most of these proteins are expressed constitutively in nervous systems and accumulated in postsynaptic regions. However, the functional significance of these proteins, especially the significance of the distinction among the proteins encoded by homer1, 2 and 3, is still obscure.

View Article and Find Full Text PDF

Although human group VIB calcium-independent phospholipase A(2) (iPLA(2)gamma) contains the lipase-consensus sequence Gly-Xaa-Ser-Xaa-Gly in the C-terminal half, its overall sequence exhibits a week similarity to those of other PLA(2)s, and thus no information on the catalytic site has been available. Here we show that the C-terminal region of human iPLA(2)gamma is responsible for the enzymatic activity. Comparison of this catalytic domain with those of the mouse homologue, human cytosolic PLA(2) (cPLA(2)), and the plant PLA(2) patatin reveals that an amino acid sequence of a short segment around Asp-627 of iPLA(2)gamma is conserved among these PLA(2)s, in addition to the Ser-483-containing lipase motif; the corresponding serine and aspartate in cPLA(2) and patatin are known to form a catalytic dyad.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbtp7rmt0jktk3t54t6d83qvbv1dheuae): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once