The idea of guidance toward a target is central to axon pathfinding and brain wiring in general. In this work, we show how several thousand axonal growth cones self-pattern without target-dependent guidance during neural superposition wiring in . Ablation of all target lamina neurons or loss of target adhesion prevents the stabilization but not the development of the pattern.
View Article and Find Full Text PDFSpatial navigation and memory rely on neural systems that encode places, distances, and directions in relation to the external world or relative to the navigating organism. Place, grid, and head-direction cells form key units of world-referenced, allocentric cognitive maps, but the neural basis of self-centered, egocentric representations remains poorly understood. Here, we used human single-neuron recordings during virtual spatial navigation tasks to identify neurons providing a neural code for egocentric spatial maps in the human brain.
View Article and Find Full Text PDFRemembering the temporal order of a sequence of events is a task easily performed by humans in everyday life, but the underlying neuronal mechanisms are unclear. This problem is particularly intriguing as human behavior often proceeds on a time scale of seconds, which is in stark contrast to the much faster millisecond time-scale of neuronal processing in our brains. One long-held hypothesis in sequence learning suggests that a particular temporal fine-structure of neuronal activity - termed 'phase precession' - enables the compression of slow behavioral sequences down to the fast time scale of the induction of synaptic plasticity.
View Article and Find Full Text PDFThe medial entorhinal cortex (MEC) and the adjacent parasubiculum are known for their elaborate spatial discharges (grid cells, border cells, etc.) and the precessing of spikes relative to the local field potential. We know little, however, about how spatio-temporal firing patterns map onto cell types.
View Article and Find Full Text PDFUnlabelled: The identity of phase-precessing cells in the entorhinal cortex is unknown. Here, we used a classifier derived from cell-attached recordings to separate putative pyramidal cells and putative stellate cells recorded extracellularly in layer II of the medial entorhinal cortex in rats. Using a novel method to identify single runs as temporal periods of elevated spiking activity, we find that both cell types show phase precession but putative stellate cells show steeper slopes of phase precession and larger phase ranges.
View Article and Find Full Text PDFAs a rat moves, grid cells in its entorhinal cortex (EC) discharge at multiple locations of the external world, and the firing fields of each grid cell span a hexagonal lattice. For movements on linear tracks, spikes tend to occur at successively earlier phases of the theta-band filtered local field potential during the traversal of a firing field - a phenomenon termed phase precession. The complex movement patterns observed in two-dimensional (2D) open-field environments may fundamentally alter phase precession.
View Article and Find Full Text PDFWhen a rat moves, grid cells in its entorhinal cortex become active in multiple regions of the external world that form a hexagonal lattice. As the animal traverses one such "firing field," spikes tend to occur at successively earlier theta phases of the local field potential. This phenomenon is called phase precession.
View Article and Find Full Text PDFClin Orthop Relat Res
August 2011
This Classic Article is a reprint of the original work by E.C. Reifenstein Jr.
View Article and Find Full Text PDFTwo new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.
View Article and Find Full Text PDFAbsolute intensity (radiance) spectra of solar radiation scattered by clouds were obtained in the 1.15-micro to 3.6-micro region as a function of cloud type, cloud altitude, and scattering angle.
View Article and Find Full Text PDF