Background: Body weight changes occur frequently during advanced stages of Spinocerebellar Ataxia type 2 (SCA2), nevertheless limited information exists on biomarkers of nutritional status of these patients.
Objective.: To assess changes in surrogate nutritional markers of SCA2 patients; to explore their associations with expanded CAG repeats and disease severity.
Background: The search for valid preclinical biomarkers of cerebellar dysfunction is a key research goal for the upcoming era of early interventional approaches in spinocerebellar ataxias. This study aims to describe novel preclinical biomarkers of subtle gait and postural sway abnormalities in prodromal spinocerebellar ataxia type 2 (pre-SCA2).
Methods: Thirty pre-SCA2 patients and their matched healthy controls underwent quantitative assessments of gait and postural sway using a wearable sensor-based system and semiquantitative evaluation of cerebellar features by SARA (Scale for the Assessment and Rating of Ataxia) score.
Objective: To determine whether objective and quantitative assessment of dysarthria and dysphagia in spinocerebellar ataxia type 2 (SCA2), specifically at pre-ataxic and early disease phases, can act as sensitive disease markers.
Methods: Forty-six individuals (16 with pre-ataxic SCA2, 14 with early-stage ataxic SCA2, and 16 healthy controls) were recruited in Holguin, Cuba. All participants underwent a comprehensive battery of assessments including objective acoustic analysis, clinician-derived ratings of speech function and swallowing, and quality of life assessments of swallowing.
Corticomuscular and intermuscular coherence (CMC, IMC) reflect connectivity between neuronal activity in the motor cortex measured by electroencephalography (EEG) and muscular activity measured by electromyography (EMG), or between activity in different muscles, respectively. There is an ongoing debate on the appropriateness of EMG rectification prior to coherence estimation. This work examines the effects of EMG rectification in CMC and IMC estimation in 20 spinocerebellar ataxia type 2 (SCA2) patients, 16 prodromal SCA2 gene mutation carriers, and 26 healthy controls during a repetitive upper or lower limb motor task.
View Article and Find Full Text PDFBackground: The search for early interventions is a novel approach in spinocerebellar ataxias, but there are few studies supporting this notion. This article aimed to assess the efficacy of neurorehabilitation treatment in prodromal spinocerebellar ataxia type 2.
Methods: Thirty spinocerebellar ataxia type 2 preclinical carriers were enrolled in a randomized, controlled trial using neurorehabilitation.
Background: Cognitive decline is a common non-motor feature characterizing Spinocerebellar Ataxia type 2 (SCA2) during the prodromal stage, nevertheless a reduced number of surrogate biomarkers of these alterations have been described.
Objective: To provide insights into cognitive dysfunction in SCA2 patients using P300 event-related potentials (ERP) and to evaluate these measures as biomarkers of the disease.
Methods: A cross-sectional study was performed with 30 SCA2 patients, 20 preclinical carriers and 33 healthy controls, who underwent visual, auditory P300 ERPs, and neurological examinations and ataxia scoring.
Objective: Corticospinal tract (CST) dysfunction is common in the pre-ataxic stage of spinocerebellar ataxia type 2 (SCA2) but quantitative assessment of its progression over time has not been explored. The aim of this study was to quantify the progression of CST dysfunction in pre-ataxic SCA2 using transcranial magnetic stimulation (TMS).
Methods: Thirty-three pre-ataxic SCA2 mutation carriers and a 33 age- and gender-matched healthy controls were tested at baseline and 2-years follow-up by standardized clinical exams, validated clinical scales, and TMS.
Objective: Clinical data suggest early involvement of the corticospinal tract (CST) in spinocerebellar ataxia type 2 (SCA2). Here we tested if early CST degeneration can be detected in prodromal SCA2 mutation carriers by electrophysiological markers of CST integrity.
Methods: CST integrity was tested in 15 prodromal SCA2 mutation carriers, 19 SCA2 patients and 25 age-matched healthy controls, using corticomuscular (EEG-EMG) and intermuscular (EMG-EMG) coherence measures in upper and lower limb muscles.
Clinical signs of corticospinal tract dysfunction are a common feature of spinocerebellar ataxia type 2 (SCA2) patients. The objective of this study is to assess dysfunction of the corticospinal tract in SCA2 using corticomuscular coherence. Testing corticomuscular coherence and rating of ataxia severity and non-ataxia symptoms were performed in 19 SCA2 patients and 24 age-matched controls.
View Article and Find Full Text PDFObjective: To evaluate if the corticospinal tract is affected in the prodromal stage of spinocerebellar ataxia type 2 (SCA2), prior to development of the cerebellar syndrome.
Methods: A cross-sectional study was conducted in 37 non-ataxic SCA2 mutation carriers and in age- and sex-matched healthy controls. All subjects underwent clinical assessment and transcranial magnetic stimulation to determine corticospinal tract integrity to the right abductor pollicis brevis and tibialis anterior muscles.