Publications by authors named "Reid Huber"

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable.

View Article and Find Full Text PDF
Article Synopsis
  • A new small-molecule PD-L1 inhibitor, INCB086550, has been developed, showing promising results in blocking the PD-L1/PD-1 interaction which is significant in cancer treatment.
  • In lab tests, INCB086550 effectively prevents PD-L1 from binding to PD-1, activates immune responses, and shows potential for enhancing antitumor activity.
  • Initial clinical trials indicate that this drug may improve immune activation and control tumor growth, suggesting it could serve as a viable alternative to existing antibody therapies for cancer.
View Article and Find Full Text PDF

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations.

View Article and Find Full Text PDF

Aberrant activation of FGFR has been linked to the pathogenesis of many tumor types. Selective inhibition of FGFR has emerged as a promising approach for cancer treatment. Herein, we describe the discovery of compound (INCB054828, pemigatinib), a highly potent and selective inhibitor of FGFR1, FGFR2, and FGFR3 with excellent physiochemical properties and pharmacokinetic profiles.

View Article and Find Full Text PDF

The clinical use of first-generation phosphoinositide 3-kinase (PI3K) inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3K inhibitor that differs in structure from first-generation PI3K inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies.

View Article and Find Full Text PDF

Alterations in fibroblast growth factor receptor (FGFR) genes have been identified as potential driver oncogenes. Pharmacological targeting of FGFRs may therefore provide therapeutic benefit to selected cancer patients, and proof-of-concept has been established in early clinical trials of FGFR inhibitors. Here, we present the molecular structure and preclinical characterization of INCB054828 (pemigatinib), a novel, selective inhibitor of FGFR 1, 2, and 3, currently in phase 2 clinical trials.

View Article and Find Full Text PDF

Purpose: Bromodomain and extraterminal domain (BET) proteins regulate the expression of many cancer-associated genes and pathways; BET inhibitors have demonstrated activity in diverse models of hematologic and solid tumors. We report the preclinical characterization of INCB054329, a structurally distinct BET inhibitor that has been investigated in phase I clinical trials.

Experimental Design: We used multiple myeloma models to investigate vulnerabilities created by INCB054329 treatment that could inform rational combinations.

View Article and Find Full Text PDF

The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks.

View Article and Find Full Text PDF
Article Synopsis
  • PI3K is an important molecule in B cells and is being studied as a target for cancer treatments.
  • INCB040093 is a new medicine that blocks PI3K and has shown good results in treating patients with Hodgkin's lymphoma.
  • Tests show that INCB040093 mainly affects B cells without harming other immune cells and helps reduce tumor growth, making it a promising option for treating certain blood cancers.
View Article and Find Full Text PDF

The JAK2 c.1849G>T (p.V617F) mutation leads to constitutive activation of Janus kinase (JAK)2 and contributes to dysregulated JAK signaling in myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET).

View Article and Find Full Text PDF

The substitution of valine with phenylalanine at amino acid 617 of the Janus kinase 2 (JAK2) gene (JAK2 p.V617F) occurs in a high proportion of patients with myeloproliferative neoplasms (MPNs). The ability to accurately measure JAK2 p.

View Article and Find Full Text PDF

Objective: 11-Beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) converts inactive cortisone into active cortisol, thereby amplifying intracellular glucocorticoid action. The efficacy and safety of the 11betaHSD1 inhibitor INCB13739 were assessed when added to ongoing metformin monotherapy in patients with type 2 diabetes exhibiting inadequate glycemic control (A1C 7-11%).

Research Design And Methods: This double-blind placebo-controlled paralleled study randomized 302 patients with type 2 diabetes (mean A1C 8.

View Article and Find Full Text PDF

Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis.

View Article and Find Full Text PDF

The C-C motif chemokine receptor-2 (CCR2) regulates monocyte and macrophage recruitment and is necessary for macrophage-dependent inflammatory responses and the development of atherosclerosis. Although adipose tissue expression and circulating concentrations of CCL2 (also known as MCP1), a high-affinity ligand for CCR2, are elevated in obesity, the role of CCR2 in metabolic disorders, including insulin resistance, hepatic steatosis, and inflammation associated with obesity, has not been studied. To determine what role CCR2 plays in the development of metabolic phenotypes, we studied the effects of Ccr2 genotype on the development of obesity and its associated phenotypes.

View Article and Find Full Text PDF

Structure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico. Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date.

View Article and Find Full Text PDF

This report describes the characterization of INCB3344, a novel, potent and selective small molecule antagonist of the mouse CCR2 receptor. The lack of rodent cross-reactivity inherent in the small molecule CCR2 antagonists discovered to date has precluded pharmacological studies of antagonists of this receptor and its therapeutic relevance. In vitro, INCB3344 inhibits the binding of CCL2 to mouse monocytes with nanomolar potency (IC(50) = 10 nM) and displays dose-dependent inhibition of CCL2-mediated functional responses such as ERK phosphorylation and chemotaxis with similar potency.

View Article and Find Full Text PDF

The peroxisome proliferator activated receptor alpha (PPARalpha) plays a key role in regulating fatty acid metabolism by regulating expression of genes involved in fatty acid oxidation. To identify endogenous transcripts that could be used as surrogate markers for on-target activity of PPARalpha agonists, we employed a global profiling approach using DNA microarrays. The HK-2 cell line derived from proximal tubules of the human kidney, showed induction of several genes, including pyruvate dehydrogenase kinase 4 (PDK-4) and adipocyte differentiation related protein (ADRP) by PPARalpha ligands.

View Article and Find Full Text PDF

Plac1, a placenta-specific gene, is expressed exclusively by cells of trophoblastic lineage in the mouse, and maps to a region of the X chromosome known to be important in placental growth. These studies were undertaken to define the cellular location of the mRNA for the human orthologue, PLAC1, within the human placenta, and to examine its expression throughout gestation. By Northern analysis, PLAC1 mRNA was detected in term human placenta, migrating as a single 1.

View Article and Find Full Text PDF

Using microarray technology, we analyzed 12,000 genes for regulation by TNF-alpha and the synthetic glucocorticoid, dexamethasone, in the human lung epithelial cell line, A549. Only one gene was induced by both agents, the cellular inhibitor of apoptosis 2 (c-IAP2), which was induced 17-fold and 5-fold by TNF-alpha at 2 h and 24 h, respectively, and increased 14-fold and 9-fold by dexamethasone at 2 h and 24 h, respectively. The combination of the two agents together led to an additive increase (34-fold) at 2 h and a more than additive effect (36-fold) at 24 h.

View Article and Find Full Text PDF

Bile acid biosynthesis is regulated by both feed-forward and feedback mechanisms involving a cascade of nuclear hormone receptors. Feed-forward regulation of the rate limiting enzyme in bile acid biosynthesis is provided by oxysterols through liver-X-receptor alpha (NR1H3), while feedback regulation is provided by bile acids through farnesoid-X-receptor (FXR) (NR1H4). The Syrian golden hamster provides a useful model for studying lipid metabolism.

View Article and Find Full Text PDF

The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionedt5d5jss5jskhadsr6o0vn6uvne7eh2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once