Publications by authors named "Reid G Palmer"

Background: Male sterility has tremendous scientific and economic importance in hybrid seed production. Identification and characterization of a stable male sterility gene will be highly beneficial for making hybrid seed production economically feasible. In soybean, eleven male-sterile, female-fertile mutant lines (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified and mapped onto various soybean chromosomes, however the causal genes responsible for male sterility are not isolated.

View Article and Find Full Text PDF

In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated that previously identified morphological mutants (three chlorophyll deficient mutants, one male sterile-female fertile mutant, and three partial female sterile mutants) were caused by insertion of Tgm9 following its excision from DFR2.

View Article and Find Full Text PDF

We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b.

View Article and Find Full Text PDF

The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion from variegated to purple flower indicates excision of Tgm9, and its insertion at a new locus.

View Article and Find Full Text PDF

The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage.

View Article and Find Full Text PDF

In soybean, an environmentally stable male sterility system is vital for making hybrid seed production commercially viable. Eleven male-sterile, female-fertile mutants (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified in soybean. Of these, eight (ms2, ms3, ms5, ms7, ms8, ms9, msMOS, and msp) have been mapped to soybean chromosomes.

View Article and Find Full Text PDF

This study was designed to reveal the genome-wide distribution of presence/absence variation (PAV) and to establish a database of polymorphic PAV markers in soybean. The 33 soybean whole-genome sequences were compared to each other with that of Williams 82 as a reference genome. A total of 33,127 PAVs were detected and 28,912 PAV markers with their primer sequences were designed as the database NJAUSoyPAV_1.

View Article and Find Full Text PDF

In soybean, genic male sterility can be utilized as a tool to develop hybrid seed. Several male-sterile, female-fertile mutants have been identified in soybean. The male-sterile, female-fertile ms5 mutant was selected after fast neutron irradiation.

View Article and Find Full Text PDF

In soybean, the W4 gene encoding dihydroflavonol-4-reductase controls anthocyanin pigment biosynthesis in flowers. The mutant allele, w4-m, is characterized by variegated flowers and was evolved from the insertion of an endogenous transposable element, Tgm9, in intron II of the W4 gene. In the w4-m mutant line, reversion of the unstable allele from variegated to normal purple flower in revertants would indicate Tgm9's excision accompanied by its insertion into a second locus.

View Article and Find Full Text PDF

In diploid segregation, each alternative allele has a 50% chance of being passed on to the offspring. Mutations in genes involved in the process of meiotic division or early stages of reproductive cell development can affect allele frequency in the gametes. In addition, competition among gametes and differential survival rates of gametes can lead to segregation distortion.

View Article and Find Full Text PDF

Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-production metal oxide MNMs (nano-CeO(2) and -ZnO).

View Article and Find Full Text PDF

Soybean (Glycine max [L.] Merr.) is a major crop species and, therefore, a major target of genomic and genetic research.

View Article and Find Full Text PDF

In soybean [Glycine max (L.) Merr.], manual cross-pollination to produce large quantities of hybrid seed is difficult and time consuming.

View Article and Find Full Text PDF
Article Synopsis
  • Soybeans show natural variation in flower and seed coat colors due to different anthocyanin pigments, but the specific genes involved are not fully known.
  • Researchers localized 8 enzyme-encoding gene families and a transcription factor within the soybean genome to understand the genetic basis behind these colors.
  • Their findings on the genetic mapping of crucial color-controlling genes could aid in developing marker-assisted breeding and future studies related to soybean pigmentation.
View Article and Find Full Text PDF

Active endogenous transposable elements, useful tools for gene isolation, have not been reported from any legume species. An active transposable element was suggested to reside in the W4 locus that governs flower color in soybean. Through biochemical and molecular analyses of several revertants of the w4-m allele, we have shown that the W4 locus encodes dihydroflavonol-4-reductase 2 (DFR2).

View Article and Find Full Text PDF

In soybean (Glycine max [L.] Merr.), 3 qualitative trait loci (Pb, Y9, and Y17) are located on classical linkage group 14, which corresponds to molecular linkage group (MLG) E.

View Article and Find Full Text PDF

Mutability of the w4 flower color locus in soybean, Glycine max (L.) Merr., is conditioned by an allele designated w4-m.

View Article and Find Full Text PDF

In soybean (Glycine max (L.) Merr.), a chromosomal region defined by 3 closely linked loci, k2 (tan-saddle seed coat), Mdh1-n (malate dehydrogenase 1 null), and y20 (yellow foliage), is highly mutable.

View Article and Find Full Text PDF

Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline.

View Article and Find Full Text PDF

This study analyzed soybean seeds from 116 cultivars for total, insoluble, and soluble oxalate (Ox), phytate (InsP6), calcium (Ca), and magnesium (Mg) because of their potential beneficial or harmful effects on human nutrition. These cultivars were divided into four groups (A-D) on the basis of the year and geographic location where they were grown. Oxalate concentration ranged from about 82 to 285 mg/100 g of dry seed.

View Article and Find Full Text PDF

In the soybean genome, a chromosomal region covering three tightly linked genes, k2, Mdh1-n, and y20, was found very unstable. It was suspected that the instability of the k2 Mdh1-n y20 chromosomal region was caused by a non-autonomous transposable element residing adjacent to or in this region. In this study, we located and mapped this region with simple sequence repeat (SSR) markers on the soybean integrated map using five mapping populations.

View Article and Find Full Text PDF

The consumption of foods made from soybeans is increasing because of their desirable nutritional value. However, some soy foods contain high concentrations of oxalate and/or phytate. Oxalate is a component of calcium oxalate kidney stones, whereas phytate is an inhibitor of calcium kidney stone formation.

View Article and Find Full Text PDF

In soybean (Glycine max (L.) Merr.), the w4-mutable line that harbors the w4-m allele was identified in 1983.

View Article and Find Full Text PDF

Megagametogenesis of soybean, Glycine max (L.) Merr., cultivars Clark and Clark k2, and F1 hybrid of Clark (female parent) crossed with Clark k2 (male parent) were studied using stereo light microscopy and confocal scanning laser microscopy.

View Article and Find Full Text PDF