Microbially-induced corrosion is the acceleration of corrosion induced by bacterial biofilms. The bacteria in the biofilms oxidize metals on the surface, especially evident with iron, to drive metabolic activity and reduce inorganic species such as nitrates and sulfates. Coatings that prevent the formation of these corrosion-inducing biofilms significantly increase the service life of submerged materials and significantly decrease maintenance costs.
View Article and Find Full Text PDFThe definition and measurement of local and global aromaticity in fused ring polycyclic aromatic compounds is a complex issue. Historically, these types of molecules have been explored in this capacity by way of experimental (NMR, thermochemistry) and computational (NICS, HOMA) analyses. We previously showed how borepin rings with [ b, f] arene fusions can be used as experimental magnetic aromaticity reporters via the remaining protons attached to the borepin rings.
View Article and Find Full Text PDFThis report documents the synthesis, characterization, and computational evaluation of two isomeric borepin-containing polycyclic aromatics. The syntheses of these two isomers involved symmetrical disubstituted alkynes that were reduced to Z-olefins followed by borepin formation either through an isolable stannocycle intermediate or directly from the alkene via the trapping of a transient dilithio intermediate. Comparisons of their magnetic, crystallographic, and computational characterization to literature compounds gave valuable insights about the aromaticity of these symmetrically fused [b,f]borepins.
View Article and Find Full Text PDFThis report describes the synthesis and characterization of a series of borepin-based polycyclic aromatics bearing two different arene fusions. The borepin synthesis features streamlined Ti-mediated alkyne reduction, leading to Z-olefins, followed by direct lithiation and borepin formation. These molecules allow for an assessment of aromatic competition between the fused rings and the central borepin core.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2013
Gold nanoparticles provide a template for preparing supported lipid layers with well-defined curvature. Here, we utilize the localized surface plasmon resonance (LSPR) of gold nanoparticles as a sensor for monitoring the preparation of lipid layers on nanoparticles. The LSPR is very sensitive to the immediate surroundings of the nanoparticle surface and it is used to monitor the coating of lipids and subsequent conversion of a supported bilayer to a hybrid membrane with an outer lipid leaflet and an inner leaflet containing hydrophobic alkanethiol.
View Article and Find Full Text PDFIt has been reported that the oxidation of phosphatidylcholine (PC) is necessary for C-reactive protein (CRP) to bind to lipid membranes, but it remains elusive why CRP only binds oxidized membranes. Here we offer a new perspective on the role of membrane curvature and CRP binding using engineered lipoprotein particle (LPP) mimics. We show that CRP binds preferentially to LPP mimics with diameters of ≤ 28 nm, and binding of CRP to these mimics leads to the dissociation of native CRP into monomeric CRP, exposing CRP neo-epitopes that bind C1q.
View Article and Find Full Text PDF