IEEE Trans Ultrason Ferroelectr Freq Control
August 2009
BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.
View Article and Find Full Text PDFWe report a UV-Raman study of folded acoustic vibrations in epitaxial ferroelectric BaTiO3/SrTiO3 superlattices. The folded acoustic doublets show an anomalous temperature dependence disappearing above the ferroelectric transition, which is tuned by varying the thickness of the BaTiO3 and SrTiO3 layers. A mechanism involving the acoustic phonon modulation of the spatially periodic ferroelectric polarization explains the observed temperature dependence.
View Article and Find Full Text PDFMultiferroicity can be induced in strontium titanate by applying biaxial strain. Using optical second harmonic generation, we report a transition from 4/mmm to the ferroelectric mm2 phase, followed by a transition to a ferroelastic-ferroelectric mm2 phase in a strontium titanate thin film. Piezoelectric force microscopy is used to study ferroelectric domain switching.
View Article and Find Full Text PDFBiaxial compressive strain has been used to markedly enhance the ferroelectric properties of BaTiO3 thin films. This strain, imposed by coherent epitaxy, can result in a ferroelectric transition temperature nearly 500 degrees C higher and a remanent polarization at least 250% higher than bulk BaTiO3 single crystals. This work demonstrates a route to a lead-free ferroelectric for nonvolatile memories and electro-optic devices.
View Article and Find Full Text PDFSystems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (T(c)) is traditionally accomplished by chemical substitution-as in Ba(x)Sr(1-x)TiO(3), the material widely investigated for microwave devices in which the dielectric constant (epsilon(r)) at GHz frequencies is tuned by applying a quasi-static electric field. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees, which is detrimental to tunability and microwave device performance.
View Article and Find Full Text PDFBull Environ Contam Toxicol
July 1969