Publications by authors named "Rehanguli Ruzi"

Stereodivergent syntheses of different scaffolds from identical starting materials by switching the fewest parameters are among the most appealing synthetic technologies. Herein, a visible-light mediated Ni-catalyzed carboxylation of vinyl halides with formates has been developed, affording acrylic acids in both - and -configurations from identical vinyl halides. The reaction features Ni-catalyzed gas-free carboxylation of vinyl halides by utilizing formates as a surrogate of carbon dioxide.

View Article and Find Full Text PDF

The ketone functional group has a unique reactivity in organic chemistry and is associated with a number of useful reactions. Catalytic methods for ketone synthesis are continually being developed. Here, we report a photoredox, nickel and phosphoranyl radical synergistic cross-electrophile coupling of commercially available chemicals, aromatic acids and aryl/alkyl bromides.

View Article and Find Full Text PDF

An unprecedented deoxygenative arylation of aromatic carboxylic acids has been achieved, allowing the construction of an enhanced library of unsymmetrical diaryl ketones. The synergistic photoredox catalysis and phosphoranyl radical chemistry allows for precise cleavage of a stronger C-O bond and formation of a weaker C-C bond by 1,5-aryl migration under mild reaction conditions. This new protocol is independent of substrate redox-potential, electronic, and substituent effects.

View Article and Find Full Text PDF

An efficient deoxygenative radical cyclization reaction has been reported for the synthesis of fluorenones by employing various biarylcarboxylic acids via photoredox catalysis. Attractive features of this process include generation of acyl radical, which quickly underdone intramolecular radical cyclization. This method marks the first photocatalytic intramolecular acyl radical coupling for constructing carbon-carbon bond, which further synthesizes the valuable fluorenone products with mild conditions, good yields, and good functional-group compatibility.

View Article and Find Full Text PDF

The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.

View Article and Find Full Text PDF

Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle.

View Article and Find Full Text PDF

A hydroacylation reaction of alkenes has been achieved employing readily available carboxylic acids as the acyl source and hydrosilanes as a hydrogen source via photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps has dramatically expanded new applications of carboxylic acids in organic synthesis. The protocol also features extremely mild conditions, broad substrate scope, and good functional group tolerance, affording a novel and convenient approach to hydroacylation of alkenes.

View Article and Find Full Text PDF