Publications by authors named "Rehana Z Hussain"

Background: Individual disease modifying therapies approved for multiple sclerosis (MS) have limited effectiveness and potentially serious side effects, especially when administered over long periods. Sequential combination therapy is a plausible alternative approach. Natalizumab is a monoclonal therapeutic antibody that reduces leukocyte access to the central nervous system that is associated with an increased risk of progressive multifocal leukoencephalopathy and disease reactivation after its discontinuation.

View Article and Find Full Text PDF

In the context of autoimmunity, myeloid cells of the central nervous system (CNS) constitute an ontogenically heterogeneous population that includes yolk sac-derived microglia and infiltrating bone marrow-derived cells (BMC). We previously identified a myeloid cell subset in the brain and spinal cord that expresses the surface markers CD88 and CD317 and is associated with the onset and persistence of clinical disease in the murine model of the human CNS autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). We employed an experimental platform utilizing single-cell transcriptomic and epigenomic profiling of bone marrow-chimeric mice to categorically distinguish BMC from microglia during CNS autoimmunity.

View Article and Find Full Text PDF

Background: Natalizumab is a recombinant humanized monoclonal antibody (mAb) against α4-integrin that is approved for relapsing forms of multiple sclerosis (MS). Natalizumab is associated with an increased risk of developing progressive multifocal leukoencephalopathy (PML), and with disease reactivation after cessation of treatment that is likely mediated by an accumulation of pro-inflammatory lymphocytes in the blood during therapy. Alemtuzumab is a mAb against CD52 that reduces the number of peripheral lymphocytes.

View Article and Find Full Text PDF

For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers.

View Article and Find Full Text PDF

The advent of disease modifying therapies (DMT) in the past two decades has been the cornerstone of successful clinical management of multiple sclerosis (MS). Despite the great strides made in reducing the relapse frequency and occurrence of new signal changes on neuroimaging in patients with relapsing remitting MS (RRMS) by approved DMT, it has been challenging to demonstrate their effectiveness in non-active secondary progressive MS (SPMS) and primary progressive MS (PPMS) disease phenotypes. The dichotomy of DMT effectiveness between RRMS and progressive MS informs on distinct pathogeneses of the different MS phenotypes.

View Article and Find Full Text PDF

Natalizumab, a humanized monoclonal antibody (mAb) against α4-integrin, reduces the number of dendritic cells (DC) in cerebral perivascular spaces in multiple sclerosis (MS). Selective deletion of α4-integrin in CD11c cells should curtail their migration to the central nervous system (CNS) and ameliorate experimental autoimmune encephalomyelitis (EAE). We generated CD11c.

View Article and Find Full Text PDF

The antioxidant MnTBAP was previously shown to down-regulate the surface expression of CD4 molecule in T cells. This observation obviously holds great potential impact in a number of pathological human conditions, including autoimmunity. Three different single doses of MnTBAP reduced the frequency of CD4 cells.

View Article and Find Full Text PDF

Background: The Cre-lox system is a non-dynamic method of gene modification and characterization. Promoters thought to be relatively cell-specific are utilized for generation of cell-lineage-specific gene modifications.

Methods: CD11c.

View Article and Find Full Text PDF

Clinical trials of new treatments in multiple sclerosis (MS) currently require large sample sizes and long durations in order to yield reliable results. The differential responses of an already heterogeneous population of MS patients to individual disease-modifying therapies (DMTs) will further complicate future trials. MS trials with smaller samples and faster outcomes are conceivable through the substitution of current clinical and MRI outcomes with objectively measureable genomic and proteomic biomarkers.

View Article and Find Full Text PDF

Lymphocyte homing into the intestine is mediated by binding of leukocytes to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), expressed on endothelial cells. Currently, the immune system of the gut is considered a major modulator not only of inflammatory bowel disease, but also of extra-intestinal autoimmune disorders, including multiple sclerosis (MS). Despite intense research in this field, the exact role of the intestine in the pathogenesis of (neuro-)inflammatory disease conditions remains to be clarified.

View Article and Find Full Text PDF

Objective: The goal of this study was to investigate the role of CD 19 B cells within the brain and spinal cord during CNS autoimmunity in a peptide-induced, primarily T-cell-mediated experimental autoimmune encephalomyelitis (EAE) model of MS. We hypothesized that CD19 B cells outside the CNS drive inflammation in EAE.

Methods: We generated CD19.

View Article and Find Full Text PDF

Objective: Natalizumab blocks 4-integrin-mediated leukocyte migration into the central nervous system (CNS). It diminishes disease activity in multiple sclerosis (MS), but carries a high risk of progressive multifocal encephalopathy (PML), an opportunistic infection with JV virus that may be prompted by diminished CNS immune surveillance. The initial host response to viral infections entails the synthesis of type I interferons (IFN) upon engagement of TLR3 receptors.

View Article and Find Full Text PDF

Background: Para-dichlorobenzene (PDCB) is an aromatic hydrocarbon contained in mothballs that is potentially neurotoxic. A potential pathogenic role of PDCB in MS pathogenesis has been suggested.

Methods: To determine the ability of chronic PDCB ingestion to induce CNS autoimmunity in a genetically susceptible mammalian species, naive myelin oligodendrocyte glycoprotein peptide (MOG)35-55 T cell receptor (TCR) transgenic mice (2D2) on the C57Bl/6 background were orally gavaged once daily with corn oil control, 125 mg/kg PDCB, or 250 mg/kg PDCB for 45 days.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to assess the effectiveness of various tissue dissociation methods for isolating mononuclear cells from the central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE) by evaluating capacity, efficiency, and reliability.
  • - Four criteria were used to evaluate different methods, including cell viability, total live cell count, test-retest reliability, and correlation with disease severity, where enzymatic methods significantly outperformed others in terms of cell yield and assay application.
  • - The findings suggest that using the Neural Tissue Dissociation Kit for enzymatic dissociation is the best standard method for studying cellular events linked to multiple sclerosis (MS) based on its strong correlation with disease severity in EAE models.*
View Article and Find Full Text PDF

Background: Laquinimod is an anti-inflammatory agent with good central nervous system (CNS) bioavailability, and neuroprotective and myelorestorative properties. A clinical trial in patients with multiple sclerosis demonstrated that laquinimod significantly reduced loss of brain volume. The cellular substrate or molecular events underlying that treatment effect are unknown.

View Article and Find Full Text PDF

Background: Interleukin (IL)-12 and IL-23 are heterodimers that share the p40 subunit, and both cytokines are critical in the differentiation of T helper (Th)1 and Th17 cells, respectively. Th1 and Th17 effector cells have been implicated in the pathogenesis of experimental autoimmune encephalitis (EAE), an animal model of the human central nervous system (CNS) autoimmune demyelinating disorder multiple sclerosis (MS). However, ustekinumab, a monoclonal antibody (mAb) against p40 failed to show efficacy over placebo in a phase II clinical trial in patients with MS.

View Article and Find Full Text PDF
Article Synopsis
  • Treatment of CNS autoimmune disorders often requires reducing immune cells or preventing their movement to affected areas, which has been effective in multiple sclerosis (MS).
  • Many current treatments can cause serious side effects because they disrupt the body's natural immune surveillance in the CNS.
  • The review discusses the immune cells involved in CNS defense, their role in MS and experimental models, and suggests new models to test treatments' effects on immune cell function and potential adverse outcomes.
View Article and Find Full Text PDF

Immune surveillance of the CNS is critical for preventing infections; however, there is no accepted experimental model to assess the risk of infection when utilizing disease-modifying agents. We tested two approved agents for patients with multiple sclerosis (MS), glatiramer acetate and fingolimod, in an experimental model of CNS immune surveillance. C57BL/6 mice were infected with the ME49 strain of the neuroinvasive parasite Toxoplasma gondii (T.

View Article and Find Full Text PDF

Fumarates improve multiple sclerosis (MS) and psoriasis, two diseases in which both IL-12 and IL-23 promote pathogenic T helper (Th) cell differentiation. However, both diseases show opposing responses to most established therapies. First, we show in humans that fumarate treatment induces IL-4-producing Th2 cells in vivo and generates type II dendritic cells (DCs) that produce IL-10 instead of IL-12 and IL-23.

View Article and Find Full Text PDF
Article Synopsis
  • Experimental autoimmune encephalomyelitis (EAE) serves as a key model for studying multiple sclerosis (MS) and this study aimed to improve the protocol for inducing EAE in C57BL/6 mice through adoptive transfer.
  • The researchers successfully established a step-wise method that achieved approximately 70% incidence of EAE in recipient mice by using lymph node cells from donor mice immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55.
  • Key findings revealed that lymph node cells collected 12 days post-immunization, when restimulated with MOG and interleukin-12, were essential for transferring disease, showing a strong association between inflammatory response and disease susceptibility
View Article and Find Full Text PDF

Objective: To determine if suppressing Nogo-A, an axonal inhibitory protein, will promote functional recovery in a murine model of multiple sclerosis (MS).

Methods: A small interfering RNA was developed to specifically suppress Nogo-A (siRNA-NogoA). The siRNA-NogoA silencing effect was evaluated in vitro and in vivo via immunohistochemistry.

View Article and Find Full Text PDF

The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice.

View Article and Find Full Text PDF

Pupillometry is a non-invasive technique, based on well-established neurophysiologic principles, that can be utilized to objectively characterize pathophysiologic demyelinating and neurodegenerative changes involving the pupillary reflex pathway. In animal models of human disorders, pupillometry derived reflex metrics could potentially be used to longitudinally monitor disease activity and responses to pharmacotherapies. These investigations would have important implications for translational initiatives focused on the identification and application of novel neuroprotective and restorative treatments for human diseases such as multiple sclerosis.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists have been shown to have a therapeutic benefit in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). In this study, we investigated the mechanism by which the PPARalpha agonist gemfibrozil induces immune deviation and protects mice from EAE. We demonstrated that treatment with gemfibrozil increases expression of the Th2 transcription factor GATA-3 and decreases expression of the Th1 transcription factor T-bet in vitro and directly ex vivo.

View Article and Find Full Text PDF

The mechanisms of T cell vaccination (TCV) are still unclear, especially the molecular interactions for recognition of autoreactive T cells by the immune system. Here we investigated the role of CD28:B7 interaction in TCV-induced protection in the murine EAE model. We demonstrate that there is increased expression of both B7-1 and B7-2 on autoreactive Th1 cells compared to Th2 cells.

View Article and Find Full Text PDF