Publications by authors named "Rehana Ismail"

Purpose: Astrocytes cope-up the hypoxia conditions by up regulating the activity of the enzymes catalyzing the irreversible steps of the glycolytic pathway. The phosphofructokinase1 (PFK1), which converts fructose-6-phosphate to fructose-1, 6-bisphosphate, is the major regulatory enzyme of the glycolytic pathway. For this purpose, we investigated the expression regulation of the PFK1 during chemically induced hypoxia.

View Article and Find Full Text PDF

Purpose: Connexin 43 (Cx43) is a widely expressed gap junction protein. It can also regulate various gap-junction independent processes, including cellular proliferation. The latter regulatory functions have been attributed to its carboxy-terminal domain, CT-Cx43.

View Article and Find Full Text PDF

MicroRNAs are small non-coding RNAs, 19-24 nucleotides in length that bind to the 3'UTR of target mRNAs and thus regulate gene expression post transcriptionally. MiRNAs have been implicated in various biological and pathological processes. The binding of miRNAs to 3'UTR is crucial for regulating the mRNA level and hence protein expression.

View Article and Find Full Text PDF

Connexin 43 is an important gap junction protein in vertebrates and is known for its tumor suppressive properties. Cx43 is abundantly expressed in the human intestinal epithelial cells and muscularis mucosae. To explore the role of Cx43 in the genesis of human colon cancer, we performed the expression analysis of Cx43 in 80 cases of histopathologically confirmed and clinically diagnosed human colon cancer samples and adjacent control tissue and assessed correlations with clinicopathological variables.

View Article and Find Full Text PDF

The structural and functional analogy between difluoromethylene bisphosphonate (CF2PP) and pyrophosphate (PPi) is investigated in a reaction with V(V) in the form of vanadate. The reaction of CF2PP with vanadate was investigated using 1.00 M KCl as supporting electrolyte over the ranges 3 < or = [CF2PP] < or = 60 mM and 2.

View Article and Find Full Text PDF

Singlet oxygen reacts with Ir(I) and Rh(I) thiolato complexes to form the corresponding Ir(III) and Rh(III) peroxo thiolato complexes which do not undergo intramolecular oxidation of the thiolate moiety.

View Article and Find Full Text PDF