A key challenge is to produce the uniform morphology and regular pore design of inorganic hollow fiber membranes (HFMs) due to involvement of multiple parameters including, fabrication process and materials chemistry. Inorganic HFMs required technical innovations via novel structural design and artificial intelligence (AI) to produce the uniform structure and regular pore design. Therefore, this review aims at critical analysis on the most recent and relevant approaches to tackle the issues related to tune the morphology and pore design of inorganic HFMs.
View Article and Find Full Text PDFThe ultimate structure of the membrane is determined using two important effects: (i) thermodynamic effect and (ii) kinetic effect. Controlling the mechanism of kinetic and thermodynamic processes in phase separation is essential for enhancing membrane performance. However, the relationship between system parameters and the ultimate membrane morphology is still largely empirical.
View Article and Find Full Text PDFBiological cell membranes can efficiently switch Na/K selectivity in response to external stimuli, but achieving analogous functions in a single artificial membrane is challenging. Here, we report highly crystalline covalent organic framework (COF) membranes with well-defined nanochannels and coordinative sites (i. e.
View Article and Find Full Text PDF