We describe here the biological screening of a collection of natural occurring triterpenoids against the G protein-coupled receptor TGR5, known to be activated by bile acids and which mediates some important cell functions. This work revealed that betulinic (1), oleanolic (2), and ursolic acid (3) exhibited TGR5 agonist activity in a selective manner compared to bile acids, which also activated FXR, the nuclear bile acid receptor. The most potent natural triterpenoid betulinic acid was chosen as a reference compound for an SAR study.
View Article and Find Full Text PDFThe natural mushroom pigment Norbadione A and three other pulvinic acids were shown by our group to display very efficient antioxidant properties by comparison with a collection of potent molecules including catechols, flavonoids, stilbenes, or coumarins. Despite numerous publications on robust and straightforward synthetic access to pulvinic acids by us and others, no report has been made to unravel the structure-activity relationships that govern the striking antioxidant activity. Herein is presented the synthesis of 18 diverse pulvinic acid derivatives and the study of their radical scavenging capacities by four different assays.
View Article and Find Full Text PDFTGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modulators of this receptor and at the same time clarifying the molecular basis of TGR5 activation, we report herein the biological screening of a collection of natural occurring bile acids, bile acid derivatives, and some steroid hormones, which has resulted in the discovery of new potent and selective TGR5 ligands. Biological results of the tested collection of compounds were used to extend the structure-activity relationships of TGR5 agonists and to develop a binary classification model of TGR5 activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2007
Olive tree (Olea europeaea) leaves are well known for their effect on metabolism in particular as a traditional anti-diabetic and anti-hypertensive herbal drug. These properties are until now only attributed to oleuropein, the major secoiridoid of olive leaves. Here we describe the isolation and the identification of another constituent implicated in the anti-diabetic effect of this plant, i.
View Article and Find Full Text PDFThe retinoid X receptor (RXR), a ubiquitously expressed intracellular receptor, regulates pathways controlling glucose, triglycerides, cholesterol, and bile acid metabolism. In addition to its role in those metabolic pathways, we reported that RXR activation with a pan agonist [e.g.
View Article and Find Full Text PDF