Publications by authors named "Regis Ferriere"

Addressing global environmental crises such as anthropogenic climate change requires the consistent adoption of proenvironmental behavior by a large part of a population. Here, we develop a mathematical model of a simple behavior-environment feedback loop to ask how the individual assessment of the environmental state combines with social interactions to influence the consistent adoption of proenvironmental behavior, and how this feeds back to the perceived environmental state. In this stochastic individual-based model, individuals can switch between two behaviors, 'active' (or actively proenvironmental) and 'baseline', differing in their perceived cost (higher for the active behavior) and environmental impact (lower for the active behavior).

View Article and Find Full Text PDF

A previous modelling study reported that spectro-temporal cues perceptually relevant to humans provide enough information to accurately classify "natural soundscapes" recorded in four distinct temperate habitats of a biosphere reserve [Thoret, Varnet, Boubenec, Ferriere, Le Tourneau, Krause, and Lorenzi (2020). J. Acoust.

View Article and Find Full Text PDF

Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production.

View Article and Find Full Text PDF

There is now good evidence that many mutualisms evolved from antagonism; why or how, however, remains unclear. We advance the Co-Opted Antagonist (COA) Hypothesis as a general mechanism explaining evolutionary transitions from antagonism to mutualism. COA involves an eco-coevolutionary process whereby natural selection favors co-option of an antagonist to perform a beneficial function and the interacting species coevolve a suite of phenotypic traits that drive the interaction from antagonism to mutualism.

View Article and Find Full Text PDF

The decomposition of soil organic matter (SOM) is a critical process in global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of microbial decomposition in spite of its evolutionary vulnerability to "cheaters"-mutant strains that reap the benefits of cooperation while paying a lower cost.

View Article and Find Full Text PDF

Species often interact with multiple mutualistic partners that provide functionally different benefits and/or that interact with different life-history stages. These functionally different partners, however, may also interact directly with one another in other ways, indirectly altering net outcomes and persistence of the mutualistic system as a whole. We present a population dynamical model of a three-species system involving antagonism between species sharing a mutualist partner species with two explicit life stages.

View Article and Find Full Text PDF

Natural soundscapes correspond to the acoustical patterns produced by biological and geophysical sound sources at different spatial and temporal scales for a given habitat. This pilot study aims to characterize the temporal-modulation information available to humans when perceiving variations in soundscapes within and across natural habitats. This is addressed by processing soundscapes from a previous study [Krause, Gage, and Joo.

View Article and Find Full Text PDF

The history of the Earth has been marked by major ecological transitions, driven by metabolic innovation, that radically reshaped the composition of the oceans and atmosphere. The nature and magnitude of the earliest transitions, hundreds of million years before photosynthesis evolved, remain poorly understood. Using a novel ecosystem-planetary model, we find that pre-photosynthetic methane-cycling microbial ecosystems are much less productive than previously thought.

View Article and Find Full Text PDF

Ecosystem carbon flux partitioning is strongly influenced by poorly constrained soil CO efflux (F). Simple model applications (Arrhenius and Q) do not account for observed diel hysteresis between F and soil temperature. How this hysteresis emerges and how it will respond to variation in vegetation or soil moisture remains unknown.

View Article and Find Full Text PDF

Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single-species population model along a one-dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco-evolutionary dynamics and speed of invasion.

View Article and Find Full Text PDF

How ecological interactions, genetic processes, and environmental variability jointly shape the evolution of species diversity remains a challenging problem in biology. We developed an individual-based model of clade diversification to predict macroevolutionary dynamics when resource competition, genetic differentiation, and landscape fluctuations interact. Diversification begins with a phase of geographic adaptive radiation.

View Article and Find Full Text PDF

Horizontal transfer (HT) of heritable information or 'traits' (carried by genetic elements, plasmids, endosymbionts, or culture) is widespread among living organisms. Yet current ecological and evolutionary theory addressing HT is scant. We present a modeling framework for the dynamics of two populations that compete for resources and horizontally exchange (transfer) an otherwise vertically inherited trait.

View Article and Find Full Text PDF

The importance of 'eco-evolutionary feedbacks' in natural systems is currently unclear. Here, we advance a general hypothesis for a particular class of eco-evolutionary feedbacks with potentially large, long-lasting impacts in complex ecosystems. These eco-evolutionary feedbacks involve traits that mediate important interactions with abiotic and biotic features of the environment and a self-driven reversal of selection as the ecological impact of the trait varies between private (small scale) and public (large scale).

View Article and Find Full Text PDF

Whether biotic or abiotic factors are the dominant drivers of clade diversification is a long-standing question in evolutionary biology. The ubiquitous patterns of phylogenetic imbalance and branching slowdown have been taken as supporting the role of ecological niche filling and spatial heterogeneity in ecological features, and thus of biotic processes, in diversification. However, a proper theoretical assessment of the relative roles of biotic and abiotic factors in macroevolution requires models that integrate both types of factors, and such models have been lacking.

View Article and Find Full Text PDF

How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals.

View Article and Find Full Text PDF

Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability.

View Article and Find Full Text PDF

There is concern that the rate of environmental change is now exceeding the capacity of many populations to adapt. Mitigation of biodiversity loss requires science that integrates both ecological and evolutionary responses of populations and communities to rapid environmental change, and can identify the conditions that allow the recovery of declining populations. This special issue focuses on evolutionary rescue (ER), the idea that evolution might occur sufficiently fast to arrest population decline and allow population recovery before extinction ensues.

View Article and Find Full Text PDF

Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk.

View Article and Find Full Text PDF

Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient.

View Article and Find Full Text PDF

Ecological and evolutionary processes may interact on the same timescale, but we are just beginning to understand how. Several studies have examined the net effects of adaptive evolution on ecosystem properties. However, we do not know whether these effects are confined to direct interactions or whether they propagate further through indirect ecological pathways.

View Article and Find Full Text PDF

Mutualisms are interspecific interactions that yield reciprocal benefits. Here, by adopting a consumer-resource perspective, we show how considering competition is necessary in order to understand the evolutionary and ecological dynamics of mutualism. We first review the ways in which competition shapes the ecology of mutualisms, using a graphical framework based on resource flows rather than net effects to highlight the opportunities for competition.

View Article and Find Full Text PDF

In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed.

View Article and Find Full Text PDF