The performance of metasurfaces measured experimentally often discords with expected values from numerical optimization. These discrepancies are attributed to the poor tolerance of metasurface building blocks with respect to fabrication uncertainties and nanoscale imperfections. Quantifying their efficiency drop according to geometry variation are crucial to improve the range of application of this technology.
View Article and Find Full Text PDFMath Biosci Eng
December 2019
The objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by Autoroutes Trafic.
View Article and Find Full Text PDFOptimization of the performance of flat optical components, also dubbed metasurfaces, is a crucial step towards their implementation in realistic optical systems. Yet, most of the design techniques, which rely on large parameter search to calculate the optical scattering response of elementary building blocks, do not account for near-field interactions that strongly influence the device performance. In this work, we exploit two advanced optimization techniques based on statistical learning and evolutionary strategies together with a fullwave high order Discontinuous Galerkin Time-Domain (DGTD) solver to optimize phase gradient metasurfaces.
View Article and Find Full Text PDF