Publications by authors named "Regine Hakenbeck"

Reduced amounts of the essential penicillin-binding protein 2x (PBP2x) were detected in two cefotaxime-resistant laboratory mutants C405 and C606. These mutants contain two or four mutations in the penicillin-binding domain of PBP2x, respectively. The transcription of the gene was not affected in both mutants; thus, the reduced PBP2x amounts were likely due to post-transcriptional regulation.

View Article and Find Full Text PDF

Alterations in PBP2a have been recognized in cefotaxime-resistant laboratory mutants and β-lactam-resistant clinical isolates of Streptococcus pneumoniae. DNA sequencing revealed fundamental differences between these two settings. Internal stop codons in pbp2a occurred in all three laboratory mutants analyzed, caused by a mutation in pbp2a of mutant C604, and tandem duplications within pbp2a resulting in premature stop codons in another two mutants C403 and C406.

View Article and Find Full Text PDF

Penicillin-resistant strains are found at high rates in Romania and Iran. The mosaic structure of PBP2x was investigated in 9 strains from Iran and in 15 strains from Romania to understand their evolutionary history. Mutations potentially important for β-lactam resistance were identified by comparison of the PBP2x sequences with the sequence of the related PBP2x of reference penicillin-sensitive strains.

View Article and Find Full Text PDF

isolates of serotype 23F with intermediate penicillin resistance were recovered on seven occasions over a period of 37 months from a cystic fibrosis patient in Berlin. All isolates expressed the same multilocus sequence type (ST), ST10523. The genome sequences of the first and last isolates, D122 and D141, revealed the absence of two phage-related gene clusters compared to the genome of another ST10523 strain, D219, isolated earlier at a different place in Germany.

View Article and Find Full Text PDF

The draft genome sequences of two multiple-antibiotic-resistant isolates from Hungary, Hu15 and Hu17, are reported here. Strain Hu15 is penicillin susceptible, whereas Hu17 is a high-level-penicillin-resistant strain. Both isolates belong to the serotype 19A sequence type 226, a single-locus variant (in the locus) of the Hungary-6 clone.

View Article and Find Full Text PDF

The clone Hungary-6 expresses unusually high levels of β-lactam resistance, which is in part due to mutations in the MurM gene, encoding a transferase involved in the synthesis of branched peptidoglycan. Moreover, it contains the allele , encoding the histidine kinase CiaH (M. Müller, P.

View Article and Find Full Text PDF

The identification of commensal streptococci species is an everlasting problem due to their ability to genetically transform. A new challenge in this respect is the recent description of as a new species, which was distinguished from closely related pathogenic and commensal by a variety of physiological and molecular biological tests. Forty-one atypical isolates have been collected at the German National Reference Center for Streptococci (GNRCS).

View Article and Find Full Text PDF

Penicillin-binding proteins (PBPs) are membrane-associated enzymes, which are involved in the last two steps of peptidoglycan biosynthesis, and some of them are key players in cell division. Furthermore, they are targets of β-lactams, the most widely used antibiotics. Nevertheless, very little is known about the expression and regulation of PBP genes.

View Article and Find Full Text PDF

Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes.

View Article and Find Full Text PDF

Members of the Mitis group of streptococci possess teichoic acids (TAs) as integral components of their cell wall that are unique among Gram-positive bacteria. Both, lipoteichoic (LTA) and wall teichoic acid, are formed by the same biosynthetic pathway, are of high complexity and contain phosphorylcholine (P-Cho) residues. These residues serve as anchors for choline-binding proteins (CBPs), some of which have been identified as virulence factors of the human pathogen Streptococcus pneumoniae.

View Article and Find Full Text PDF

Beta-lactam resistant clinical isolates of Streptococcus pneumoniae contain altered penicillin-binding protein (PBP) genes and occasionally an altered murM, presumably products of interspecies gene transfer. MurM and MurN are responsible for the synthesis of branched lipid II, substrate for the PBP catalyzed transpeptidation reaction. Here we used the high-level beta-lactam resistant S.

View Article and Find Full Text PDF

Understanding of antibiotic resistance in Streptococcus pneumoniae has been hindered by the low frequency of recombination events in bacteria and thus the presence of large linked haplotype blocks, which preclude identification of causative variants. A recent study combining a large number of genomes of resistant phenotypes has given an insight into the evolving resistance to β-lactams, providing the first large-scale identification of candidate variants underlying resistance.

View Article and Find Full Text PDF

The human pathogen Streptococcus pneumoniae has been treated for decades with β-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of β-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances.

View Article and Find Full Text PDF

Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) is an enzyme involved in the last stages of peptidoglycan assembly and essential for bacterial growth and survival. PBP2x localizes to the division site, a process that depends on its Penicillin-Binding Protein And Serine-Threonine-kinase Associated (PASTA) domains, which was previously demonstrated via GFP-PBP2x in living cells. During this study a mutant strain was isolated in which the GFP-PBP2x fusion protein did not localize at division sites and it contained reduced amounts of the full-length GFP-PBP2x.

View Article and Find Full Text PDF

Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin.

View Article and Find Full Text PDF

The transpeptidase activity of the essential penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae is believed to be important for murein biosynthesis required for cell division. To study the molecular mechanism driving localization of PBP2x in live cells, we constructed a set of N-terminal GFP-PBP2x fusions under the control of a zinc-inducible promoter. The ectopic fusion protein localized at mid-cell.

View Article and Find Full Text PDF

Background: Penicillin-resistance in Streptococcus pneumoniae is mainly due to alterations in genes encoding the target enzymes for beta-lactams, the penicillin-binding proteins (PBPs). However, non-PBP genes are altered in beta-lactam-resistant laboratory mutants and confer decreased susceptibility to beta-lactam antibiotics. Two piperacillin resistant laboratory mutants of Streptococcus pneumoniae R6 contain mutations in the putative glycosyltransferase gene cpoA.

View Article and Find Full Text PDF

Background: Antimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974.

View Article and Find Full Text PDF

The polysaccharide capsule of Streptococcus pneumoniae is one of the most important virulence factors responsible for human infections and in mouse infection models as well. Larvae of Manduca sexta were used as an alternative animal model in order to test the impact of the pneumococcal capsule on virulence in the insect host. The unencapsulated S.

View Article and Find Full Text PDF

Background: Changes in serotype prevalence among pneumococcal populations result from both serotype replacement and serotype (capsular) switching. Temporal changes in serotype distributions are well documented, but the contribution of capsular switching to such changes is unknown. Furthermore, it is unclear to what extent vaccine-induced selective pressures drive capsular switching.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae, also called the pneumococcus, is a major bacterial pathogen. Since its introduction in the 1940s, penicillin has been the primary treatment for pneumococcal diseases. Penicillin resistance rapidly increased among pneumococci over the past 30 years, and one particular multidrug-resistant clone, PMEN1, became highly prevalent globally.

View Article and Find Full Text PDF

Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically.

View Article and Find Full Text PDF