Publications by authors named "Regina Pohlmann"

Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD).

View Article and Find Full Text PDF

Golgi-localized, γ-ear-containing, ADP ribosylation factor-binding (GGA) proteins are monomeric adaptors implicated in clathrin-mediated vesicular transport between the trans Golgi network and endosomes, characterized mainly from cell culture analysis of lysosomal sorting. To provide the first demonstration of GGA's role in vivo, we used Drosophila which has a single GGA and a single lysosomal sorting receptor, lysosomal enzyme receptor protein (LERP). Using RNAi knockdowns, we show that the Drosophila GGA is required for lysosomal sorting.

View Article and Find Full Text PDF

SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport.

View Article and Find Full Text PDF

In mammalian cells, the mannose 6-phosphate receptor pathway accounts for the transport of most soluble acid hydrolases to lysosomes. It is believed that dissociation of mannose 6-phosphate receptors and their ligands is entirely driven by the acidic environment in endosomal compartments. Indeed, pH-perturbing substances such as ammonium chloride and monensin have been shown to inhibit lysosomal enzyme targeting in cells that express both known mannose 6-phosphate receptors.

View Article and Find Full Text PDF

Mannose-6-phosphate receptors (MPRs) have been identified in a wide range of species from humans to invertebrates such as molluscs. A characteristic of all MPRs is their common property to recognize mannose-6-phosphate residues that are labelling lysosomal enzymes and to mediate their targeting to lysosomes in mammalian cells by the corresponding receptor proteins. We present here the analysis of full-length sequences for MPR 46 from zebrafish (Danio rerio) and its functional analysis.

View Article and Find Full Text PDF

Biogenesis of lysosomes depends in mammalian cells on the specific recognition and targeting of mannose 6-phosphate-containing lysosomal enzymes by two mannose 6-phosphate receptors (MPR46, MPR300), key components of the extensively studied receptor-mediated lysosomal sorting system in complex metazoans. In contrast, the biogenesis of lysosomes is poorly investigated in the less complex metazoan Drosophila melanogaster. We identified the novel type I transmembrane protein lysosomal enzyme receptor protein (LERP) with partial homology to the mammalian MPR300 encoded by Drosophila gene CG31072.

View Article and Find Full Text PDF

Yeast Vps10p is a receptor for transport of the soluble vacuolar hydrolase carboxypeptidase Y to the lysosome-like vacuole. Its functional equivalents in mammalian cells are the mannose 6-phosphate receptors that mediate sorting to lysosomes of mannose 6-phosphate-containing lysosomal proteins. A chimeric receptor was constructed by substituting the cytoplasmic domain of M(r) 300,000 mannose 6-phosphate receptor with the Vps10p cytoplasmic tail.

View Article and Find Full Text PDF