Publications by authors named "Regina Nogueira"

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data.

View Article and Find Full Text PDF

Wastewater treatment plant (WWTP) influent sampling is commonly used in wastewater-based disease surveillance to assess the circulation of pathogens in the population aggregated in a catchment area. However, the signal can be lost within the sewer network due to adsorption, degradation, and dilution processes. The present work aimed to investigate the dynamics of SARS-CoV-2 concentration in three sub-catchments of the sewer system in the city of Hildesheim, Germany, characterised by different levels of urbanisation and presence/absence of industry, and to evaluate the benefit of sub-catchment sampling compared to WWTP influent sampling.

View Article and Find Full Text PDF

Risk assessment and management of Legionella spp. contamination in activated sludge in wastewater treatment plants is carried out using the culture method. Underestimation of Legionella spp.

View Article and Find Full Text PDF

The reaction kinetics of lithotrophic ammonia-oxidizing bacteria (AOB) are strongly dependent on dissolved oxygen (DO) as their metabolism is an aerobic process. In this study, we estimate the kinetic parameters, including the oxygen affinity constant (Km[O2]) and the maximum oxygen consumption rate (Vmax[O2]), of different AOB species, by fitting the data to the Michaelis-Menten equation using nonlinear regression analysis. An example for three different species of Nitrosomonas bacteria (N.

View Article and Find Full Text PDF

Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) has great potential to monitor community public health, especially during pandemics. However, it faces substantial hurdles in pathogen surveillance through WBE, encompassing data representativeness, spatiotemporal variability, population estimates, pathogen decay, and environmental factors. This paper aims to enhance the reliability of WBE data, especially for early outbreak detection and improved sampling strategies within sewer networks.

View Article and Find Full Text PDF

Rooftop rainwater harvesting systems and blue-green infrastructure are becoming important resilience alternatives for urban climate adaptation. This study sheds light on the largely unreported physicochemical and microbiological quality of private roof-harvested rainwater (RHRW). We aimed to identify the physicochemical and microbiological characteristics of RHRW, explore potential correlations between them and assess probable health risks associated with recreational interactions of children with the water.

View Article and Find Full Text PDF

The objective of this study was to assess the value of the abnormal circadian blood pressure pattern by ambulatory blood pressure monitoring (ABPM) to predict the onset of abnormal albuminuria in normotensive and normoalbuminuric DM patients. The participators were submitted to ABPM and followed prospectively until the onset of albuminuria or the end of follow-up. The patients with normal circadian blood pressure pattern were compared with the non-dippers in regard of the time interval free of albuminuria.

View Article and Find Full Text PDF

Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios.

View Article and Find Full Text PDF

Ornamental fountains are attractive urban infrastructures helping cities to cope with global warming, as water sprays have great cooling effects due to evaporative properties; however, exposure to microbiologically impaired water from ornamental fountains during recreational activities may result in adverse health outcomes for the exposed population. This study assesses the microbial water quality of four ornamental water fountains (Blätterbrunnen, Körtingbrunnen, Klaus-Bahlsen-Brunnen, and Marstallbrunnen) and performs a quantitative microbial risk assessment (QMRA) for children using Escherichia coli, Enterococci, and Salmonella to quantify the probability of gastrointestinal illnesses and Pseudomonas aeruginosa to quantify the risk of dermal infections. Samples were collected fortnightly in two campaigns in 2020 and 2021 and processed to determine bacterial concentrations.

View Article and Find Full Text PDF

The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly.

View Article and Find Full Text PDF

Impetuous urbanization and population growth are driving increased demand for plastics to formulate impeccable industrial and biomedical commodities. The everlasting nature and excruciating waste management of petroleum-based plastics have catered to numerous challenges for the environment. However, just implementing various end-of-life management techniques for assimilation and recycling plastics is not a comprehensive remedy; instead, the extensive reliance on finite resources needs to be reduced for sustainable production and plastic product utilization.

View Article and Find Full Text PDF

The production of polyhydroxyalkanoates (PHAs) from waste cooking oil (WCO) by a mixed culture was investigated in the present study at increasing WCO concentrations, temperature and ammonium availability. The PHA production was done in two steps: in the first step, a mixed culture was enriched in PHA-accumulating bacteria from activated sludge in a sequencing batch reactor operated in a feast-famine mode and in the second step the PHA accumulation by the enriched mixed culture was assessed in a batch reactor. In the enrichment step, two substrates, WCO and nonanoic acid were used for enrichment and in the PHA accumulation step only WCO was used.

View Article and Find Full Text PDF

Juçara (Euterpe edulis) is a native Brazilian palm tree from the Atlantic Forest, whose fruit-processing waste can present high concentration of antioxidant compounds. This research was assessed to determine the antioxidant potential of juçara waste extracts aiming to reduce the lipid and protein oxidation processes on conventional and antibiotic-free broiler meat throughout 9 d during refrigerated storage. The juçara waste extracts were obtained by microwave-assisted extraction.

View Article and Find Full Text PDF

We present a multi-dimensional continuum mathematical model for modeling the growth of a symbiotic biofilm system. We take a dual-species namely, the Streptococcus-Veillonella sp. biofilm system as an example for numerical investigations.

View Article and Find Full Text PDF

Microplastics are solid polymer particles with a wide variety of surface properties, found in most waterbodies, and known as carriers of distinct microbial communities affecting the fate of the particles in the environment. Little is known about the formation of mineral deposits on microplastics and how these deposits connect to microbial assemblages and affect the physicochemical properties of the particles. In addition, most of the available research on this topic is based on large microplastics with sizes between 100 μm and up to 5 mm, rather than the small microplastics often found in drinking water sources.

View Article and Find Full Text PDF

The stress response of ammonia-oxidizing bacteria (AOB) to oxygen deprivation limits AOB growth and leads to different nitrification pathways that cause the release of greenhouse gases. Measuring the stress response of AOB has proven to be a challenge due to the low growth rates of stressed AOB, making the sample volumes required to monitor the internal stress response of AOB prohibitive to repeated analysis. In a proof-of-concept study, confocal Raman microscopy with excitation resonant to the heme c moiety of cytochrome c was used to compare the cytochrome c content and activity of stressed and unstressed (Nm 50), (Nm 57), (Nsp 10), and sp.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) present an eco-friendly alternative for conventional plastics. Industrial wastewater from the food industry is a copious source of organic carbon that can be recovered in the form of PHA. However, the wastewater composition varies considerably among the different industries demanding for an industry-specific investigation of the PHA production process.

View Article and Find Full Text PDF

The production of polyhydroxyalkanoates (PHA) from wastewaters using microbial mixed cultures (MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding.

View Article and Find Full Text PDF

The deammonification process, which includes nitritation and anammox bacteria, is an energy-efficient nitrogen removal process. Starting up an anammox process in a wastewater treatment plant (WWTP) is still widely believed to require external seeding of anammox bacteria. To demonstrate the principle of a non-seeded anammox start-up, anammox bacteria in potential sources must be quantified.

View Article and Find Full Text PDF

Hydrogels are made from natural or synthetic polymers and, currently, they have many biomedical applications. In this work, the conditions for obtaining a hydrogel with similar physicochemical characteristics to the vitreous humor were defined using polyvinyl alcohol (PVA) and glutaraldehyde (GLUT) as cross-linker. The concentration of PVA and GLUT were modified, and their effect was analyzed in terms of the refractive index, density, and dynamic viscosity.

View Article and Find Full Text PDF

The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS).

View Article and Find Full Text PDF

Purpose: In this study, we characterized rabbit corneas subjected to corneal cross-linking (CXL) with açaí extract compared with a riboflavin photo-stimulated procedure.

Materials And Methods: The corneas of the slaughterhouse rabbits were divided into three groups: control, consisting of untreated corneal samples; riboflavin/UVA, where corneas were treated with 0.1% riboflavin photo-stimulated at 365 nm as the standard protocol; and açaí, where the samples were subjected to 4% açaí extract for 0.

View Article and Find Full Text PDF

We combine confocal Raman microscopy (CRM) of wet samples with subsequent Fluorescent in situ hybridization (FISH) without significant limitations to either technique for analyzing the same sample of a microbial community on a cell-to-cell basis. This combination of techniques allows a much deeper, more complete understanding of complex environmental samples than provided by either technique alone. The minimalistic approach is based on laboratory glassware with micro-engravings for reproducible localization of the sample at cell scale combined with a fixation and de- and rehydration protocol for the respective techniques.

View Article and Find Full Text PDF

A survey of Pb activity concentration, one of the major internal natural radiation sources to man, has been carried in the most common species of beans (Phaseolus vulgaris L.) grown and consumed in Brazil. The representative bean types chosen, Carioca beans and black type sown in the Brazilian Midwestern and Southern regions, have been collected in this study and Pb determined by liquid scintillation spectrometry after separation with chromatographic extraction using Sr-resin.

View Article and Find Full Text PDF