Background: Bariatric surgery is the most effective therapeutic option for obesity and its complications, especially in type 2 diabetes. The aim of this study was to investigate the messenger RNA (mRNA) gene expression of proglucagon, glucose-dependent insulinotropic peptide (GIP), prohormone convertase 1/3 (PC1/3), and dipeptidyl peptidase-IV (DPP-IV) in jejunum cells of the morbidly obese (OB) non type 2 diabetes mellitus (NDM2) and type 2 diabetes mellitus (T2DM), to determine the molecular basis of incretin secretion after bariatric surgery.
Methods: Samples of jejunal mucosa were obtained from 20 NDM2 patients: removal of a section of the jejunum about 60 cm distal to the ligament of Treitz and 18 T2DM patients: removal of a section of the jejunum about 100 cm distal to the ligament of Treitz.
Objective: Adipose tissue is responsible for secretion of several cytokines that mediate systemic effects on obesity and insulin resistance. Subcutaneous abdominal adipose tissue (SAT) and visceral adipose tissue (VAT) are metabolically different and have differences in their gene expression profile. Our study evaluated the expression of adiponectin, FOXO1, PPARγ, and SIRT1 in VAT and SAT of non-obese and class III obese subjects.
View Article and Find Full Text PDFBackground: The SIRT1 enzyme is involved in adipose tissue (AT) lipolysis. FOXO1 is a protein that plays a significant role in regulating metabolism. Adiponectin is an adipokine, secreted by the AT, which has been considered to have an antiobesity function.
View Article and Find Full Text PDFBackground: Visceral adipose tissue is known to release greater amounts of adipokines and free fatty acids into the portal vein, being one of the most predictive factors of nonalcoholic fatty liver disease (NAFLD). Our study has the purpose to evaluate sirtuin 1 (SIRT1), adiponectin, Forkhead/winged helix (FOXO1), peroxisome proliferator-activated receptor (PPAR)gamma1-3, and PPARbeta/delta mRNA expression in morbidly obese patients in three different lipid depots: visceral (VAT), subcutaneous (SAT), and retroperitoneal (RAT). Recent studies suggest that SIRT1, a NAD(+)-dependent deacetylase, protects rats from NAFLD.
View Article and Find Full Text PDFResveratrol (RSV) exerts anti-proliferative and pro-apoptotic actions in different cell lines. Hepatic stellate cells (HSCs) are major fibrogenic cell types that contribute to collagen accumulation during chronic liver disease. In the present study, the inhibitory effects of RSV on cell proliferation, cell cycle, and apoptosis were evaluated in the mouse hepatic stellate cell line GRX.
View Article and Find Full Text PDFHepatic stellate cells (HSC) play a crucial role in the development of liver fibrosis and are important targets in liver disease therapy. Adenosine acts as an extracellular signaling molecule in various tissues and in liver this nucleoside exerts protective effects. Ecto-5'-nucleotidase/CD73 is a marker for the plasma membrane and is considered to be a key enzyme in the generation of adenosine in the extracellular medium, by transforming AMP into adenosine.
View Article and Find Full Text PDFBackground/aims: Pre-adipocyte differentiation into adipocyte is a terminal differentiation process triggered by a cascade of transcription factors. Conversely, hepatic stellate cells (HSC) can switch between lipid storing and the myofibroblast phenotype in association with liver fibrotic processes. Here, adipogenic/lipogenic-related transcription factors and downstream-regulated genes were evaluated in a murine HSC cell line.
View Article and Find Full Text PDFObes Surg
July 2007
Background: Adipose tissue (AT) metabolism is altered in obese subjects, and the reestablishment of energy homeostasis requires the identification and regulation of genes with altered patterns. The aim of this study was to compare mRNA expression of PPARbeta/delta and PPARgamma1-3 in morbidly obese and nonobese patients. The expression pattern of these receptors in various abdominal adipose tissues, subcutaneous (SAT), retroperitoneal (RAT) and visceral (VAT), was also evaluated.
View Article and Find Full Text PDFGRX cell line represents hepatic stellate cell and can be transformed from an actively proliferation myofibroblast phenotype into a quiescent fat-storing lipocyte phenotype. Both express the same gangliosides (GM3, GM2, GM1 and GD1a), which are resolved as doublets on HPTLC. Upper/lower band ratio is increased in lipocyte-like cells and the upper band is composed by ceramides with long-chain fatty acids.
View Article and Find Full Text PDFBackground: The purpose of this study was to determine the total content of trans fatty acids (TFA) in subcutaneous, retroperitoneal and visceral fat of morbidly obese and non-obese patients submitted to bariatric surgery or plastic and abdominal surgery.
Methods: The adipose tissues were obtained by surgery; lipids were extracted, saponified and esterified. TFA were measured by FTIR-ATR spectroscopy.
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes.
View Article and Find Full Text PDFMol Cell Biochem
December 2003
In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis.
View Article and Find Full Text PDFHepatic fibrosis is a common response to chronic liver injury and is characterized by increased production of extracellular matrix components, whose major part is produced by hepatic stellate cells activated by inflammatory mediators to proliferate and migrate into the injured regions. GRX cells are a model of hepatic stellate cells characterized as myofibroblasts by morphological and biochemical criteria. We have recently shown that they respond to inflammatory mediators and cytokines present in the concanavalin A-activated spleen cell supernatant (SCS) by quantitative changes in the expression of intermediate filaments.
View Article and Find Full Text PDFSphingolipids play a relevant role in cell-cell interaction, communication, and migration. We studied the sphingolipid content in the murine hepatic stellate cell line GRX, which expresses the myofibroblast phenotype, and can be induced in vitro to display the fat-storing phenotype. Lipid modifications along this induction were investigated by labeling sphingolipids with [(14)C]galactose, [(14)C]serine, or [(14)C]choline, and determination of fatty acid composition of sphingomyelin.
View Article and Find Full Text PDF