Childhood exposure to social disadvantage is a major risk factor for psychiatric disorders and poor developmental, educational, and occupational outcomes, presumably because adverse exposures alter the neurodevelopmental processes that contribute to risk trajectories. Yet, given the limited social mobility in the United States and other countries, childhood social disadvantage is frequently preceded by maternal social disadvantage during pregnancy, potentially altering fetal brain development during a period of high neuroplasticity through hormonal, microbiome, epigenetic, and immune factors that cross the placenta and fetal blood-brain barrier. The current study examines prenatal social disadvantage to determine whether these exposures in utero are associated with alterations in functional brain networks as early as birth.
View Article and Find Full Text PDFObjective: To investigate whether parenting or neonatal brain volumes mediate associations between prenatal social disadvantage (PSD) and cognitive/language abilities and whether these mechanisms vary by level of disadvantage.
Study Design: Pregnant women were recruited prospectively from obstetric clinics in St Louis, Missouri. PSD encompassed access to social (eg, education) and material (eg, income to needs, health insurance, area deprivation, and nutrition) resources during pregnancy.
Hypoxic-ischemic encephalopathy is the most common cause of neonatal seizures. Continuous electroencephalographic monitoring is recommended given high rates of subclinical seizures. Prompt diagnosis and treatment of seizures may improve neurodevelopmental outcomes.
View Article and Find Full Text PDFPrenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear.
View Article and Find Full Text PDFPregnant women in poverty may be especially likely to experience sleep and circadian rhythm disturbances, which may have downstream effects on fetal neurodevelopment. However, the associations between sleep and circadian rhythm disturbances, social disadvantage during pregnancy, and neonatal brain structure remains poorly understood. The current study explored the association between maternal sleep and circadian rhythm disturbances during pregnancy and neonatal brain outcomes, examining sleep and circadian rhythm disturbances as a mediator of the effect of social disadvantage during pregnancy on infant structural brain outcomes.
View Article and Find Full Text PDFEarly life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy.
View Article and Find Full Text PDFObjectives: To examine healthy, full-term neonatal behavior using the Neonatal Intensive Care Unit Network Neurobehavioral Scale (NNNS) in relation to measures of maternal adversity, maternal medical risk, and infant brain volumes.
Study Design: This was a prospective, longitudinal, observational cohort study of pregnant mothers followed from the first trimester and their healthy, full-term infants. Infants underwent an NNNS assessment and high-quality magnetic resonance imaging 2-5 weeks after birth.
Importance: Exposure to early-life adversity alters the structural development of key brain regions underlying neurodevelopmental impairments. The association between prenatal exposure to adversity and brain structure at birth remains poorly understood.
Objective: To examine whether prenatal exposure to maternal social disadvantage and psychosocial stress is associated with neonatal global and regional brain volumes and cortical folding.
Preterm infants with intraventricular hemorrhage (IVH) are known to have some of the worst neurodevelopmental outcomes in all of neonatal medicine, with a growing body of evidence relating these outcomes to underlying disruptions in brain structure and function. This review begins by summarizing state-of-the-art neuroimaging techniques delineating structural and functional connectivity (diffusion and resting state functional MRI) and their application in infants with IVH, including unique technical challenges and emerging methods. We then review studies of altered structural and functional connectivity, highlighting the role of IVH severity and location.
View Article and Find Full Text PDFObjective: Posthemorrhagic hydrocephalus (PHH) is associated with significant morbidity, smaller hippocampal volumes, and impaired neurodevelopment in preterm infants. The timing of temporary CSF (tCSF) diversion has been studied; however, the optimal time for permanent CSF (pCSF) diversion is unknown. The objective of this study was to determine whether cumulative ventricle size or timing of pCSF diversion is associated with neurodevelopmental outcome and hippocampal size in preterm infants with PHH.
View Article and Find Full Text PDFPreterm infants are at high risk for brain injury during the perinatal period. Intraventricular hemorrhage and periventricular leukomalacia, the two most common patterns of brain injury in prematurely-born children, are associated with poor neurodevelopmental outcomes. The hippocampus is known to be critical for learning and memory; however, it remains unknown how these forms of brain injury affect hippocampal growth and how the resulting alterations in hippocampal development relate to childhood outcomes.
View Article and Find Full Text PDFPartial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation.
View Article and Find Full Text PDFBackground: Minimal work has used psychometrically robust measures in a systematic fashion to identify and monitor children at risk for cognitive and behavioral comorbidities in current epilepsy care. We piloted a computerized cognitive battery and behavioral questionnaire for children with newly diagnosed epilepsy to determine clinical feasibility and acceptability to parents and patients.
Methods: We recruited medication-naïve children (ages 8-17 years) with recent-onset seizures and typical developmental history from an outpatient child neurology clinic.
Objective: Deficits in executive function are noted increasingly in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional magnetic resonance imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy.
View Article and Find Full Text PDF