Publications by authors named "Regina L Nogueira"

Rationale: Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g.

View Article and Find Full Text PDF

Behavioral evidence indicates that sensitization of 5-HT1A and 5-HT2A receptors in the dorsal periaqueductal gray (DPAG) may underlie the therapeutic effect of serotonin reuptake inhibitors (SRIs) in panic disorder. These results were obtained from studies using animal models that associate escape behavior with panic attacks, such as the elevated T-maze. In this test, chronic administration of the non-selective SRI imipramine enhances the inhibitory effect on escape caused by the intra-DPAG injection of the 5-HT1A receptor agonist 8-OH-DPAT.

View Article and Find Full Text PDF

Electrical stimulation of the dorsal periaqueductal grey matter (DPAG) and deep layers of the superior colliculus (DLSC) of the rat elicits anxiety-like reactions such as freezing and flight. The temporal course of the effects of the aversive electrical stimulation of the DPAG (5, 15 and 30 min afterward) and DLSC (5, 10 and 15 min afterward) on the defensive response of rats exposed to elevated T-maze were determined. The elevated T-maze generates two defensive behaviors, inhibitory avoidance and one-way escape, which have been related, respectively, to generalized anxiety and panic disorders.

View Article and Find Full Text PDF

Rationale: Administration of 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptor agonists into the dorsal periaqueductal gray (DPAG) inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with the antipanic compound imipramine enhances the DPAG 5-HT1A- and 5-HT2A-receptor-mediated inhibition of escape, implicating these receptors in the mode of action of panicolytic drugs.

Objectives: In the present study, we investigated whether the inhibitory effect on escape elicited by the intra-DPAG injection of 5-HT1A and 5-HT2A receptor agonists is also enhanced after treatment with fluoxetine, another widely used antipanic drug.

View Article and Find Full Text PDF

Activation of GABA(A) and benzodiazepine receptors within the dorsal periaqueductal grey inhibits the escape behaviour evoked by the electrical stimulation of this midbrain area, a defensive reaction that has been related to panic. Nevertheless, there is no evidence indicating whether the same antiaversive effect is also observed in escape responses evoked by species-specific threatening stimuli. In the present study, male Wistar rats were injected intra-dorsal periaqueductal grey with the benzodiazepine receptor agonist midazolam (10, 20 and 40 nmol), the GABA(A) receptor agonist muscimol (2, 4 and 8 nmol), the GABA(B) receptor agonist baclofen (2, 4 and 8 nmol), or with the benzodiazepine inverse agonist FG 7142 (20, 40 and 80 pmol) and tested in an ethologically-based animal model of anxiety, the elevated T-maze.

View Article and Find Full Text PDF

We investigated the effects of chronic oral treatment with a water-alcohol extract from the inflorescence of Erythrina mulungu (Leguminosae-Papilionaceae) (EM, 50, 100, 200 mg/kg) in rats submitted to different anxiety models: the elevated T-maze (ETM, for inhibitory avoidance and escape measurements), the light/dark transition, and the cat odor test. These models were selected for their capacity to elicit specific subtypes of anxiety disorders as recognized in clinical practice. Treatment with EM impaired inhibitory avoidance latencies in a way similar to the reference drug, diazepam (DZP).

View Article and Find Full Text PDF

Context fear conditioning has been widely used as an animal model of anxiety whereas electrical stimulation of the dorsal portion of the periaqueductal gray (DPAG) as a model of panic attack. The present study employed these two animal models in order to investigate the influence of anxiety in the occurrence of panic attack. Results indicated that animals exposed to contextual cues that were previously associated with electrical footshocks engaged in robust defensive freezing behavior and were less likely to display flight evoked by electrical stimulation of the DPAG when compared with control animals that were not exposed to the context fear conditioning procedure.

View Article and Find Full Text PDF

The dorsal periaqueductal gray has been implicated in the modulation of escape behavior, a defensive behavior that has been related to panic disorder. Intra-dorsal periaqueductal gray injection of serotonin or drugs that mimic its effects inhibits escape induced by electrical or chemical stimulation of this brainstem area. In this study, we investigate whether intra-dorsal periaqueductal gray injection of 5-HT receptor agonists attenuates escape generated by an ethologically based model of anxiety, the elevated T-maze.

View Article and Find Full Text PDF

Electrical stimulation of the dorsal periaqueductal gray (DPAG) has been used to induce panic-like behavior in rats. In the present study, we investigated the effect of chronic imipramine treatment on the sensitivity of different 5-HT receptor subtypes in inhibiting aversion induced by electrical stimulation of this brain area. For that, the effects of intra-DPAG administration of the endogenous agonist 5-HT (20 nmol), the 5-HT(1A) receptor agonist 8-OH-DPAT (8 nmol) and the 5-HT(2A/2C) receptor agonist DOI (16 nmol) were measured in female Wistar rats given either chronic injection of imipramine (15 mg/kg, 3 weeks, ip) or saline.

View Article and Find Full Text PDF