The structure-activity relationship is a cornerstone topic in catalysis, which lays the foundation for the design and functionalization of catalytic materials. Of particular interest is the catalysis of the hydrogen evolution reaction (HER) by palladium (Pd), which is envisioned to play a major role in realizing a hydrogen-based economy. Interestingly, experimentalists observed excess heat generation in such systems, which became known as the debated "cold fusion" phenomenon.
View Article and Find Full Text PDFFor large-scale applications of hydrogen fuel cells, the sluggish kinetics of the oxygen reduction reaction (ORR) have to be overcome. So far, only platinum (Pt)-group catalysts have shown adequate performance and stability. A well-known approach to increase the efficiency and decrease the Pt loading is to alloy Pt with other metals.
View Article and Find Full Text PDFUnderstanding the electrode/electrolyte interface is crucial for optimizing electrocatalytic performances. Here, we demonstrate that the nature of alkali metal cations can profoundly impact the oxygen evolution activity of surface-mounted metal-organic framework (SURMOF) derived electrocatalysts, which are based on NiFe(OOH). In situ Raman spectroscopy results show that Raman shifts of the Ni-O bending vibration are inversely proportional to the mass activities from Cs to Li .
View Article and Find Full Text PDFIdentification of catalytically active sites at solid/liquid interfaces under reaction conditions is an essential task to improve the catalyst design for sustainable energy devices. Electrochemical scanning tunneling microscopy (EC-STM) combines the control of the surface reactions with imaging on a nanoscale. When performing EC-STM under reaction conditions, the recorded analytical signal shows higher fluctuations (noise) at active sites compared to non-active sites (noise-EC-STM or n-EC-STM).
View Article and Find Full Text PDFMaterials derived from surface-mounted metal-organic frameworks (SURMOFs) are promising electrocatalysts for the oxygen evolution reaction (OER). A series of mixed-metal, heterostructured SURMOFs is fabricated by the facile layer-by-layer deposition method. The obtained materials reveal record-high electrocatalyst mass activities of ≈2.
View Article and Find Full Text PDFCarbon is ubiquitous as an electrode material in electrochemical energy conversion devices. If used as a support material, the evolution of H2 is undesired on carbon. However, recently, carbon-based materials have aroused significant interest as economic and eco-conscious alternatives to noble metal catalysts.
View Article and Find Full Text PDFHerein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni-Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm in H -saturated 0.1 m KOH is reduced for the model single-crystal electrodes down to about 70 mV.
View Article and Find Full Text PDFCardiovascular autonomic neuropathy causes abnormalities in the diabetic heart with various clinical sequelae, including exercise intolerance, arrhythmias and painless myocardial infarction. Little is known about (ultra)structural alterations of the myocardial nervous network. On the assumption that this diabetes-specific neuropathy develops due to permanently increased oxidative stress by liberation of oxygen-free radicals, adjuvant application of antioxidative therapeutics appears promising in preventing or delaying long-term diabetic complications.
View Article and Find Full Text PDF