Objective: Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production.
Methods: However, the basis of tissue damage in mLCFAO disorders is not fully understood.
Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression.
View Article and Find Full Text PDFThe omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6-/-) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6-/- brains contained lower DHA compared with controls across the life span.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
October 2020
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility.
View Article and Find Full Text PDFAlterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is highly abundant in the brain and confers protection against numerous neurological diseases, yet the fundamental mechanisms regulating the enrichment of DHA in the brain remain unknown. Here, we have discovered that a member of the long-chain acyl-CoA synthetase family, Acsl6, is required for the enrichment of DHA in the brain by generating an Acsl6-deficient mouse (Acsl6). Acsl6 is highly enriched in the brain and lipid profiling of Acsl6 tissues reveals consistent reductions in DHA-containing lipids in tissues highly abundant with Acsl6.
View Article and Find Full Text PDF