Publications by authors named "Regina Espanol Suner"

Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target.

View Article and Find Full Text PDF

Hepatocyte nuclear factor 4 alpha (HNF4α) is critical for hepatic differentiation. Recent studies have highlighted its role in inhibition of hepatocyte proliferation and tumor suppression. However, the role of HNF4α in liver regeneration (LR) is not known.

View Article and Find Full Text PDF

Liver fibrosis, a form of scarring, develops in chronic liver diseases when hepatocyte regeneration cannot compensate for hepatocyte death. Initially, collagen produced by myofibroblasts (MFs) functions to maintain the integrity of the liver, but excessive collagen accumulation suppresses residual hepatocyte function, leading to liver failure. As a strategy to generate new hepatocytes and limit collagen deposition in the chronically injured liver, we developed in vivo reprogramming of MFs into hepatocytes using adeno-associated virus (AAV) vectors expressing hepatic transcription factors.

View Article and Find Full Text PDF

Unlabelled: Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers.

View Article and Find Full Text PDF

In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance.

View Article and Find Full Text PDF

Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH.

View Article and Find Full Text PDF

Background & Aims: Self-renewal of mature hepatocytes promotes homeostasis and regeneration of adult liver. However, recent studies have indicated that liver progenitor cells (LPC) could give rise to hepatic epithelial cells during normal turnover of the liver and after acute injury. We investigated the capacity of LPC to differentiate into hepatocytes in vivo and contribute to liver regeneration.

View Article and Find Full Text PDF

Activation of myofibroblasts (MF) and extracellular matrix (ECM) deposition predispose the expansion and differentiation of liver progenitor cells (LPC) during chronic liver injury. Because Kupffer cells (KC) are active modulators of tissue response and fibrosis, we analyzed their role in a model of LPC proliferation. A choline-deficient diet, supplemented by ethionine (CDE) was administrated to C57Bl/6J mice that were depleted of KC by repeated injections of clodronate (CLO) and compared to PBS-injected mice.

View Article and Find Full Text PDF

Unlabelled: BACKGROUND& AIMS: Embryonic biliary precursor cells form a periportal sheet called the ductal plate, which is progressively remodeled to generate intrahepatic bile ducts. A limited number of ductal plate cells participate in duct formation; those not involved in duct development are believed to involute by apoptosis. Moreover, cells that express the SRY-related HMG box transcription factor 9 (SOX9), which include the embryonic ductal plate cells, were proposed to continuously supply the liver with hepatic cells.

View Article and Find Full Text PDF