Publications by authors named "Regina E Trevino"

We have approached the construction of an artificial enzyme by employing a robust protein scaffold, lactococcal multidrug resistance regulator, LmrR, providing a structured secondary and outer coordination spheres around a molecular rhodium complex, [Rh(PNP)]. Previously, we demonstrated a 2-3 fold increase in activity for one Rh-LmrR construct by introducing positive charge in the secondary coordination sphere. In this study, a series of variants was made through site-directed mutagenesis where the negative charge is located in the secondary sphere or outer coordination sphere, with additional variants made with increasingly negative charge in the outer coordination sphere while keeping a positive charge in the secondary sphere.

View Article and Find Full Text PDF

There are ten nickel enzymes found across biological systems, each with a distinct active site and reactivity that spans reductive, oxidative, and redox-neutral processes. We focus on the reductive enzymes, which catalyze reactions that are highly germane to the modern-day climate crisis: [NiFe] hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase. The current mechanistic understanding of each enzyme system is reviewed along with existing knowledge gaps, which are addressed through the development of protein-derived models, as described here.

View Article and Find Full Text PDF

The genetic encoding of artificial enzymes represents a substantial advantage relative to traditional molecular catalyst optimization, as laboratory-based directed evolution coupled with high-throughput screening methods can provide rapid development and functional characterization of enzyme libraries. However, these techniques have been of limited utility in the field of artificial metalloenzymes due to the need for cofactor metalation. Here, we report the development of methodology for production of nickel-substituted rubredoxin, an artificial metalloenzyme that is a structural, functional, and mechanistic mimic of the [NiFe] hydrogenases.

View Article and Find Full Text PDF