Publications by authors named "Regina Duarte"

The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor).

View Article and Find Full Text PDF

Exposure to atmospheric particulate matter (PM) has been associated with heightened risks of lung cancer, cardiovascular and respiratory diseases. PM exposure also affects the immune system, leading to an increased susceptibility to infections, exacerbating pre-existent inflammatory and allergic lung diseases. Atmospheric PM can primarily impact human health through the generation of reactive oxygen species (ROS) that subsequently induce or exacerbate inflammation.

View Article and Find Full Text PDF

Analysis of complex environmental matrices poses an extreme challenge for analytical chemists due to the vast number of known and unknown compounds, with very diverse chemical and physical properties. The need for a holistic characterisation of this complexity has sparked the development of effective tools to unravel the chemical composition of such environmental samples. Multidimensional chromatographic methods, namely comprehensive two-dimensional (2D) gas and liquid chromatography (GC × GC and LC × LC, respectively), coupled to different detection systems have emerged as powerful tools with the capability to address this challenge.

View Article and Find Full Text PDF

Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field.

View Article and Find Full Text PDF

Airborne pollen allergens-a relevant component of bioaerosols and, therefore, of airborne particulate matter-are considered an important metric in air quality assessments. Although the measurement of airborne pollen allergen concentrations in outdoor environments (namely, in urban areas) has been recognized as a key environmental health indicator, no such obligation exists for indoor environments (dwellings or occupational settings). However, people spend most of their daily time (80-90%) indoors, where the majority of their exposure to air pollution, including pollen allergens, occurs.

View Article and Find Full Text PDF

The impact of inhalable fine particulate matter (PM, aerodynamic diameter <2.5 μm) on public health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies carried out with whole air particles, with the contribution of their different fractions remaining largely unknown.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophies (LGMD) are a group of genetically heterogeneous disorders characterized by predominantly proximal muscle weakness. We aimed to characterize epidemiological, clinical and molecular data of patients with autosomal recessive LGMD2/LGMD-R in Brazil. A multicenter historical cohort study was performed at 13 centers, in which index cases and their affected relatives' data from consecutive families with genetic or pathological diagnosis of LGMD2/LGMD-R were reviewed from July 2017 to August 2018.

View Article and Find Full Text PDF

The objectives of this research were to quantify the impact of organic matter content, soil pH and moisture content on the dissolution rate and solubility of copper oxide nanoparticles (CuO NPs) in soil, and to develop an empirical model to predict the dissolution kinetics of CuO NPs in soil. CuO NPs were dosed into standard LUFA soils with various moisture content, pH and organic carbon content. Chemical extractions were applied to measure the CuO NP dissolution kinetics.

View Article and Find Full Text PDF

Although bacterial meningitis is a rare presentation of a congenital immunodeficiency, invasive meningococcal disease is classically associated with complement deficiencies. We report a patient from a consanguineous kindred presenting with an invasive meningococcal disease caused by serogroup B meningococcus that revealed an underlying C5 deficiency caused by a novel mutation in the C5 gene.

View Article and Find Full Text PDF

This study investigates the structural composition and major sources of water-soluble organic matter (WSOM) from PM collected, in parallel, during summer and winter, in two contrasting suburban sites at Iberian Peninsula Coast: Aveiro (Portugal) and Coruña (Spain). PM samples were also collected at Coruña for comparison. Ambient concentrations of PM, total nitrogen (TN), and WSOM were higher in Aveiro than in Coruña, with the highest levels found in winter at both locations.

View Article and Find Full Text PDF

Background: Orofacial clefts are among the most common congenital craniofacial malformations and may be associated with other birth defects. However, the proportion and type of additional anomalies vary greatly between studies. This study assessed the prevalence and type of associated congenital malformations in children with orofacial clefts, who attended the largest cleft lip and palate tertiary referral center in Portugal.

View Article and Find Full Text PDF

Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers.

View Article and Find Full Text PDF

This study describes and compares the key structural units present in water-soluble organic carbon (WSOC) fraction of atmospheric aerosols collected in different South American (Colombia - Medellín and Bogotá, Peru - Lima, Argentina - Buenos Aires, and Brazil - Rio de Janeiro, São Paulo, and Porto Velho, during moderate (MBB) and intense (IBB) biomass burning) and Western European (Portugal - Aveiro and Lisbon) locations. Proton nuclear magnetic resonance (H NMR) spectroscopy was employed to assess the relative distribution of non-exchangeable proton functional groups in aerosol WSOC of diverse origin, for the first time to the authors' knowledge in South America. The relative contribution of the proton functional groups was in the order H-C > H-C-C= > H-C-O > Ar-H, except in Porto Velho during MBB, Medellín, Bogotá, and Buenos Aires, for which the relative contribution of H-C-O was higher than that of H-C-C=.

View Article and Find Full Text PDF

In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM) was sampled for 17 months at an urban location in the Western European Coast. The PM samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope (Sr/Sr) composition. Organic matter dominates the identifiable urban PM mass, followed by secondary inorganic aerosols.

View Article and Find Full Text PDF

The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods.

View Article and Find Full Text PDF

Our limited understanding of the effect of organic aerosols (OAs) on the climate and human health is largely because of the vast array of formation processes and sources that produce a multitude of molecular structures and physical properties. The need to unravel the enormous complexity and heterogeneity of OAs and thus understand their effects on the climate and human health has led to the development of different off-line methods based on the use of advanced analytical techniques. Within this context, nuclear magnetic resonance (NMR) spectroscopy has become essential for acquiring detailed structural characterization of the complex natural organic matter contained in atmospheric aerosols.

View Article and Find Full Text PDF

This essay examines contemporary Latin American historical writing about natural history from the nineteenth through the twentieth centuries. Natural history is a "network science," woven out of connections and communications between diverse people and centers of scholarship, all against a backdrop of complex political and economic changes. Latin American naturalists navigated a tension between promoting national science and participating in "universal" science.

View Article and Find Full Text PDF

Comprehensive two-dimensional liquid chromatographic (LC×LC) systems play an ever increasing role in separation and characterization of complex samples. When coupled with multichannel detectors, such as the diode array detector, these LC×LC systems become especially useful for non-target analysis and identification of patterns based on the information extracted from those complex samples. Nevertheless, due to the large amount of data generated by these systems, the extraction of useful information for the identification of patterns still is one of the major drawbacks for a wider application of this technique.

View Article and Find Full Text PDF

The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles.

View Article and Find Full Text PDF

Humic acids (HAs) of four representative forest soils profiles from Central Spain (two with different vegetation - pine and oak - but same parent material - granitie, and two with same vegetation - holm oak - but different parent material - granite and limestone) were investigated by solid-state cross polarization with magic angle spinning (13)C nuclear magnetic resonance (NMR) spectroscopy. The objectives included the investigation of the impact of different forest properties on HA composition, assessing how the structural characteristics of the HA vary with soil depth, and evaluating the role of HA as surrogates for mapping the different forest soils signatures using structural data derived from (13)C NMR spectroscopy. On average, alkyl C is the dominant C constituent (38-48% of the total NMR peak area) in all HA samples, followed by aromatic (12-22%) and O-alkyl C (12-19%), and finally carboxyl C (7.

View Article and Find Full Text PDF

Rudolf Barth took part in two scientific expeditions to Trindade Island, Brazil, in 1957 and 1959. As a backdrop to comments about his reports, the article tells the island's history and describes the national and world context in the 1950s. Barth warned about the environmental threats to Trindade, diagnosed its problems, and proposed solutions.

View Article and Find Full Text PDF

New flexible chromatographic response functions for one-dimensional (DCRF(f)) and two-dimensional chromatography (DCRF(f,2D)) are put forward and tested for estimating the quality index of separation in non-targeted chromatographic analysis of complex samples. These functions, based on already tested functions, have three clear-cut criteria: number of chromatographic peaks, degree of chromatographic separation, and time spent in the analysis. However, unlike the existing functions, they allow an accurate weighing and adjustment of these criteria according to the needs of the analyst.

View Article and Find Full Text PDF